A characterization of the Veronese surface
HTML articles powered by AMS MathViewer
- by Edoardo Ballico
- Proc. Amer. Math. Soc. 105 (1989), 531-534
- DOI: https://doi.org/10.1090/S0002-9939-1989-0953737-5
- PDF | Request permission
Abstract:
Here we prove a slight modification of a conjecture of Beltrametti-Sommese proving that the Veronese surface and a general intersection of 3 quadrics are the only smooth surfaces of ${\mathbf {CP}^5}$ which are $2$-spanned.References
- E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic curves. Vol. I, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 267, Springer-Verlag, New York, 1985. MR 770932, DOI 10.1007/978-1-4757-5323-3
- Mauro Beltrametti and Andrew J. Sommese, On $k$-spannedness for projective surfaces, Algebraic geometry (L’Aquila, 1988) Lecture Notes in Math., vol. 1417, Springer, Berlin, 1990, pp. 24–51. MR 1040549, DOI 10.1007/BFb0083331 M. Beltrametti, P. Francia, A. J. Sommese, On Reider’s method and higher embeddings, preprint.
- Michel Demazure, Henry Charles Pinkham, and Bernard Teissier (eds.), Séminaire sur les Singularités des Surfaces, Lecture Notes in Mathematics, vol. 777, Springer, Berlin, 1980 (French). Held at the Centre de Mathématiques de l’École Polytechnique, Palaiseau, 1976–1977. MR 579026
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1978. MR 507725
- Steven L. Kleiman, The transversality of a general translate, Compositio Math. 28 (1974), 287–297. MR 360616
- Patrick Le Barz, Formules multisécantes pour les courbes gauches quelconques, Enumerative geometry and classical algebraic geometry (Nice, 1981), Progr. Math., vol. 24, Birkhäuser, Boston, Mass., 1982, pp. 165–197 (French). MR 685769
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 105 (1989), 531-534
- MSC: Primary 14J25; Secondary 14M05
- DOI: https://doi.org/10.1090/S0002-9939-1989-0953737-5
- MathSciNet review: 953737