Elliptic curves of bounded degree and height
HTML articles powered by AMS MathViewer
- by Joseph H. Silverman
- Proc. Amer. Math. Soc. 105 (1989), 540-545
- DOI: https://doi.org/10.1090/S0002-9939-1989-0953747-8
- PDF | Request permission
Abstract:
We show that there are only finitely many elliptic curves of bounded degree and height, provided that one takes a naive height defined in terms of minimal Weierstrass equations. We show that the corresponding statement is false if instead one uses the Faltings-Parshin modular height.References
- Gerd Faltings, Finiteness theorems for abelian varieties over number fields, Arithmetic geometry (Storrs, Conn., 1984) Springer, New York, 1986, pp. 9–27. Translated from the German original [Invent. Math. 73 (1983), no. 3, 349–366; MR0718935; ibid. 75 (1984), no. 2, 381; MR0732554] by Edward Shipz. MR 861971
- Helmut Hasse, Number theory, Akademie-Verlag, Berlin, 1979. Translated from the third German edition of 1969 by Horst Günter Zimmer. MR 544018
- Serge Lang, Fundamentals of Diophantine geometry, Springer-Verlag, New York, 1983. MR 715605, DOI 10.1007/978-1-4757-1810-2 J. Manin and Y. Zarhin, Heights on families of abelian varieties, Math. USSR-Sb. 18 (1972), 169-179.
- D. G. Northcott, An inequality in the theory of arithmetic on algebraic varieties, Proc. Cambridge Philos. Soc. 45 (1949), 502–509. MR 33094, DOI 10.1017/s0305004100025202
- Joseph H. Silverman, Integer points and the rank of Thue elliptic curves, Invent. Math. 66 (1982), no. 3, 395–404. MR 662599, DOI 10.1007/BF01389220
- Joseph H. Silverman, Lower bounds for height functions, Duke Math. J. 51 (1984), no. 2, 395–403. MR 747871, DOI 10.1215/S0012-7094-84-05118-4
- Joseph H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1986. MR 817210, DOI 10.1007/978-1-4757-1920-8
- Joseph H. Silverman, Heights and elliptic curves, Arithmetic geometry (Storrs, Conn., 1984) Springer, New York, 1986, pp. 253–265. MR 861979
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 105 (1989), 540-545
- MSC: Primary 11G05; Secondary 14G25, 14K07
- DOI: https://doi.org/10.1090/S0002-9939-1989-0953747-8
- MathSciNet review: 953747