MEROMORPHIC FUNCTIONS ON A COMPACT RIEMANN SURFACE
AND ASSOCIATED COMPLETE MINIMAL SURFACES

KICHOON YANG

(Communicated by Jonathen M. Rosenberg)

Abstract. We prove that given any meromorphic function f on a compact Riemann surface M' there exists another meromorphic function g on M' such that \{df, g\} is the Weierstrass pair defining a complete conformal minimal immersion of finite total curvature into Euclidean 3-space defined on M' punctured at a finite set of points. As corollaries we obtain i) any compact Riemann surface can be immersed in Euclidean 3-space as in the above with at most $4p + 1$ punctures, where p is the genus of the Riemann surface; ii) any hyperelliptic Riemann surface of genus p can be so immersed with at most $3p + 4$ punctures.

Introduction

Let M be a (connected) Riemann surface and consider a conformal minimal immersion $\varphi : M \to \mathbb{R}^3$. It is a fundamental theorem due to Chern and Osserman [CO] that for a complete φ (i.e., the induced metric on M is complete) the total curvature is finite if and only if the Gauss map is algebraic. (In fact this result is true in any \mathbb{R}^n. However, our interest lies solely in the case $n = 3$.) For the sake of simplicity we shall call a complete conformal minimal immersion $\varphi : M \to \mathbb{R}^3$ of finite total curvature an algebraic minimal surface. In particular if $\varphi : M \to \mathbb{R}^3$ is an algebraic minimal surface then M is, via a biholomorphism, identified with a compact Riemann surface M' punctured at finitely many points and the Gauss map of φ extends holomorphically to all of M'. Klotz and Sario [KS] proved that there exists an algebraic minimal surface of every genus. Hoffman and Meeks [HM] later exhibited an algebraic minimal surface of every genus with exactly three punctures that is actually embedded. On the other hand Gackstatter and Kunert [GK] proved that any compact Riemann surface can be immersed in \mathbb{R}^3 as an algebraic minimal surface with finitely many punctures.

In the present paper we prove that given any meromorphic function f on a compact Riemann surface M' there exists another meromorphic function g on M' so that \{df, g\} is the Weierstrass pair giving an algebraic minimal
surface defined on \(M' \) punctured at the supports of the polar divisors of \(f \) and \(g \). Since there always are an abundant supply of meromorphic functions on a Riemann surface our theorem implies the Gackstatter–Kunert theorem. As corollaries of our theorem we also obtain the following: i) any compact Riemann surface of genus \(p \) can be immersed in \(\mathbb{R}^3 \) as an algebraic minimal surface with at most \(4p + 1 \) punctures, ii) any hyperelliptic Riemann surface of genus \(p \) can be immersed in \(\mathbb{R}^3 \) as an algebraic minimal surface with at most \(3p + 4 \) punctures.

Our proof uses the Riemann–Roch theorem in an essential way and the technique is a variation on the ones used in [GK], [CG], and [BC].

§1. THE WEIERSTRASS REPRESENTATION FORMULA

Consider a conformal minimal immersion \(\varphi = (\varphi^a): M \to \mathbb{R}^3 \) from a Riemann surface \(M \). The Gauss map of \(\varphi \) is a map \(M \to \mathbb{C}P^2 \) given by

\[
\Phi: z \mapsto \left[\frac{\partial \varphi^a}{\partial z} \right],
\]

where \(z \) is a local holomorphic coordinate in \(M \). The differential of \(\varphi \) gives globally defined holomorphic 1-forms \((\zeta^a) \) on \(M \) given locally by

\[
\zeta^a = \eta^a \, dz,
\]

where \(\eta^a = \frac{\partial \varphi^a}{\partial z} \).

We then must have

1. \(\Sigma |\eta^a|^2 > 0 \);
2. \(\Sigma (\eta^a)^2 = 0 \);
3. the \(\zeta^a \)'s have no real periods.

Condition (1) means that \(\varphi \) is an immersion. Condition (2) provides that \(\varphi \) is conformal. The holomorphy of \((\zeta^a) \) then reflects the fact that \(\varphi \) is minimal. Condition (3) says that the line integrals \(\text{Re} \int z (\zeta^a) \) are path independent. This is so since we must have

\[
\varphi^a(z) = 2 \text{Re} \int z \zeta^a.
\]

Conversely once we have holomorphic 1-forms \((\zeta^a) \) on \(M \) satisfying (1), (2), and, (3) then (4) defines a conformal minimal immersion \(M \to \mathbb{R}^3 \).

Assume now that \(\varphi(M) \) does not lie in the \(xy \)-plane in \(\mathbb{R}^3 \). Introduce the holomorphic 1-form \(\mu \) and the meromorphic function \(g \) by

\[
\mu = \zeta^1 - i\zeta^2, \quad g = \zeta^3 / \eta,
\]

where \(\mu = \eta \, dz \). Note that \(\mu \) is a holomorphic 1-form on \(M \) and \(g \) is a meromorphic function on \(M \) such that whenever \(g \) has a pole of order \(m \) at a point then \(\mu \) has a zero of order \(2m \) at the same point. (See [L], p. 113.)
\{\mu, g\} is called the \textit{Weierstrass pair of \varphi}. Conversely given a pair \{\mu, g\} on \(M\) whose zeros and poles are related as mentioned above we may put
\begin{align}
\zeta^1 &= \frac{1}{2}(1 - g^2)\mu, \\
\zeta^2 &= \frac{i}{2}(1 + g^2)\mu, \\
\zeta^3 &= g\mu
\end{align}
giving rise to holomorphic 1-forms \((\zeta^\alpha)\) on \(M\) satisfying (1) and (2). It follows that \((\zeta^\alpha)\) defines a conformal minimal immersion at least on the universal cover of \(M\). In order for \((\zeta^\alpha)\) to define a conformal minimal immersion on \(M\) we must have the condition (3) met also.

Let \(M = M' \setminus \Sigma\), where \(M'\) is a compact Riemann surface and \(\Sigma\) is a finite set. Take an exact meromorphic 1-form \(\mu\) (\(\mu\) is \(df\) for some meromorphic function \(f\) on \(M'\)) on \(M'\) and a meromorphic function \(g\) on \(M'\) such that restricted to \(M\) \(\mu\) and \(g\) are holomorphic. A sufficient condition (cf. [GK]) that \((\zeta^\alpha)\) given by (6) have no real periods on \(M\) is
\begin{align}
g\mu \text{ and } g^2\mu \text{ have no residues and no periods on } M'.
\end{align}
Given that the condition (7) is met (4) defines a conformal minimal immersion
\begin{align}
\varphi: M' \setminus \Sigma \rightarrow \mathbb{R}^3.
\end{align}
The Gauss map of \(\varphi\) in (8) extends holomorphically to all of \(M'\) since the \(\zeta^\alpha\)'s involved have at worst a pole at the points of \(\Sigma\). (See [L], p. 134 for a proof of this fact.)

The induced metric on \(M\) is given by \(h(z)dz\cdot d\overline{z}\) with \(h(z) = 2|\eta^\alpha|^2\) and the immersion \(\varphi\) is complete given that
\begin{align}
\Sigma|\eta^\alpha|^2 = c/|z|^{2m} + \text{higher-order terms},
\end{align}
where \(c \in \mathbb{C}\), \(z\) is a local holomorphic coordinate centered at one of the points in \(\Sigma\), and \(\eta^\alpha = \partial \varphi^\alpha/\partial z\). The expansion shows that any path approaching one of the punctures has infinite arc length.

\section*{§2. The main result}

\textbf{Theorem.} \textit{Let \(f\) be any nonconstant meromorphic function on a compact Riemann surface \(M'\) of genus \(p > 0\). Then there exists another meromorphic function \(g\) on \(M'\) such that \(\{df, g\}\) is the Weierstrass pair giving a complete conformal minimal immersion of finite total curvature}
\begin{align}
\varphi: M = M' \setminus \Sigma \rightarrow \mathbb{R}^3,
\end{align}
\textit{where} \(\Sigma = \text{supp}(f)_\infty \cup \text{supp}(g)_\infty\).

\textbf{Proof.} Let \(f\) be a nonconstant meromorphic function on \(M'\) with polar divisor
\begin{align}
(f)_\infty = \Sigma b_ip_i; \quad 1 \leq i \leq n, \quad p_i \in M'.
\end{align}
Also put \(d = \Sigma b_i\). Then \(d\) is the degree of the polar divisor of \(f\). And \(df\), a meromorphic 1-form on \(M'\), has poles of order \(b_i + 1\) at \(p_i\) and no other poles. Put
\begin{align}
(df)_0 = \Sigma a_jq_j; \quad 1 \leq j \leq m, \quad q_j \in M'.
\end{align}
We then have $2p - 2 = \deg(df)_0 - \deg(df)_\infty$ since $(df) = (df)_0 - (df)_\infty$ is a canonical divisor. Thus

$$\Sigma a_j = (2p - 2) + d + n.$$

Define a divisor D on M' by

$$D = \Sigma a_j q_j - \Sigma c_i p_i,$$

where $\Sigma c_i = 3p - 2 + d + n$ and $c_i \geq b_i + 1$. It follows that $\deg D = -p$. The Riemann-Roch theorem then tells us that

$$\dim L(-D) = \deg(-D) - p + 1 + \dim L((df) + D) \geq 1,$$

where $L(-D) = \{G, \text{ meromorphic function on } M' : (G) \geq D\} \cup \{0\}$. Given $G \in L(-D)$ set

$$(G)_0 = \Sigma \hat{a}_j q_j + \Sigma \hat{a}_m q_m q_k + \Sigma \hat{c}_i p_i; \quad 1 \leq j \leq m, 1 \leq k \leq l,$$

$$(G)_\infty = \Sigma \hat{c}_i p_i; \quad 1 \leq i \leq n.$$

Note that we must have

$$\hat{c}_i \leq c_i; \quad \hat{a}_j \geq a_j; \quad \Sigma \hat{a}_j + \Sigma \hat{a}_m = \Sigma c_i.$$

The last condition reflects the fact that (G) is a principal divisor and the first two conditions say that $G \in L(-D)$.

Define a meromorphic function g on M' by

$$g = \sum_{\alpha=1}^\lambda c_\alpha \frac{1}{G^\alpha},$$

where $\lambda = 2(n + m + l - 1) + 4p + 1$. The c_α's are complex constants to be chosen suitably later. Since $\text{supp}(g)_\infty = \text{supp}(G)_0$ we get

$$\text{supp}(g)_\infty = \{q_1, \ldots, q_{m+1}\}.$$

Consider the meromorphic 1-forms $g df$ and $g^2 df$ on M'. Observe that

$$\{q_{m+1}, \ldots, q_{m+1}\} \subset \text{supp}(g df)_\infty \subset \{q_1, \ldots, q_{m+1} ; p_1, \ldots, p_n\},$$

$$\{q_1, \ldots, q_{m+1}\} \subset \text{supp}(g^2 df)_\infty \subset \{q_1, \ldots, q_{m+1} ; p_1, \ldots, p_n\}.$$

We claim that we can choose (c_α), not all zero, such that $g df$ and $g^2 df$ have no residues and no periods on M'. Put

$$R_{i\alpha} = \text{the residue of } \frac{df}{G^\alpha} \text{ at } p_i,$$

$$R_{j\alpha} = \text{the residue of } \frac{df}{G^\alpha} \text{ at } q_j,$$

$$R_{k\alpha} = \text{the residue of } \frac{df}{G^\alpha} \text{ at } q_{m+k}.$$
So the residue of $g df$ at p_i is $\sum_\alpha c_\alpha R_{i\alpha}$, etc. Thus $g df$ on M' has no residues if and only if

$$\sum_\alpha c_\alpha R_{i\alpha} = 0; \quad \sum_\alpha c_\alpha R_{j\alpha} = 0; \quad \sum_\alpha c_\alpha R_{k\alpha} = 0.$$

Now the total residue of any meromorphic 1-form must vanish. Hence

$$\sum_\alpha c_\alpha R_{i\alpha} + \sum_\alpha c_\alpha R_{j\alpha} + \sum_\alpha c_\alpha R_{k\alpha} = 0.$$

It follows that (A) represents a homogeneous linear system in (c_α) containing at most $(n + m + l - 1)$ independent equations. Let (e_1, \ldots, e_{2p}) be 1-cycles representing a (canonical) homology basis of M' and put

$$P_{\alpha a} = \int_{e_\alpha} \frac{df}{G^a}; \quad 1 \leq a \leq 2p, \quad 1 \leq \alpha \leq \lambda.$$

$P_{\alpha a}$ is the e_α-period of df/G^a. So the e_α-period of the meromorphic 1-form $g df$ is $\sum_\alpha c_\alpha P_{\alpha a}$. Thus $g df$ has no periods if and only if

$$\sum_\alpha c_\alpha P_{\alpha a} = 0.$$

This gives a homogeneous linear system in (c_α) containing $2p$ equations. We now consider the meromorphic 1-form $g^2 df$. The residue at p_i of $g^2 df$ is

$$R_i(c_\alpha) = R_{i2}c_1^2 + R_{i4}c_2^2 + \cdots + R_{i2\lambda}c_\lambda^2 + 2R_{i3}c_1c_2 + \cdots + 2R_{i2\lambda}c_{\lambda-1}c_\lambda,$$

where $R_{ij\lambda}$ denotes the residue at p_i of $df/G^{2\lambda}$, etc. Thus $g^2 df$ has no residues if and only if

$$R_i(c_\alpha) = 0; \quad R_j(c_\alpha) = 0; \quad R_k(c_\alpha) = 0.$$

Again we can eliminate one of the equations from (C) using the fact that the total residue of $g^2 df$ must vanish. Hence (C) represents a homogeneous quadratic system $(R_i, R_j, R_k$ are all homogeneous polynomials in (c_α) of degree 2) in (c_α) containing $(n + m + l - 1)$ equations. Requiring $g^2 df$ to have no periods we obtain another homogeneous quadratic system (D) containing $2p$ equations. The total number of equations in (A–D) is $2(n + m + l - 1) + 4p = \lambda - 1$ and the claim follows. (Observe that in solving the system (A–D) we are intersecting a set of hyperplanes and homogeneous hyperquadrics in C^λ.) Equation (7) now tells us that $\{df, g\}$ is the Weierstrass pair representing a conformal minimal immersion $\varphi: M' \setminus \Sigma \to \mathbb{R}^3$, where $\Sigma = \text{supp}(f)_\infty \cup \text{supp}(g)_\infty = \{p_1, \ldots, p_n; q_1, \ldots, q_{m+1}\}$. The Gauss map of φ extends holomorphically to all of M' since the ζ^α's given by (6) with $\mu = df$ have at worst a pole at the points of Σ. Condition (9) is also routinely verified. For example, df has a pole of order $b_i + 1$ at p_i and condition (9) is met with $m \geq 2$. \(\square\)

Note that in the above proof

$$n \leq d; \quad m + l \leq 3p + d + n - 2.$$
Let $\#$ denote the total number of punctures of φ, i.e., $\#$ is the cardinality of Σ. Then we obtain

$$\# = n + m + l \leq 3p + 3d - 2.$$

Corollary. Let M' be any compact Riemann surface of genus p. Then there exists a complete conformal minimal immersion of finite total curvature

$$\varphi: M' \backslash \Sigma \rightarrow \mathbb{R}^3 \quad \text{with} \quad |\Sigma| \leq 4p + 1.$$

Proof. Let $p_1 \in M'$ be a non-Weierstrass point. Then there exists a meromorphic function f on M' with $(f)_\infty = (p + 1)p_1$. So $n = 1$. Also

$$m + l \leq 3p + d + n - 2 = 4p$$

and the result follows. \hfill \Box

Corollary. Let M' be any hyperelliptic Riemann surface of genus p. Then there exists a complete conformal minimal immersion of finite total curvature

$$\varphi: M' \backslash \Sigma \rightarrow \mathbb{R}^3 \quad \text{with} \quad |\Sigma| \leq 3p + 4.$$

Proof. On a hyperelliptic Riemann surface there exists a meromorphic function whose polar divisor has degree two. So we can take $d = 2$. \hfill \Box

References

Department of Mathematics, Arkansas State University, State University, Arkansas 72467