Meromorphic functions on a compact Riemann surface and associated complete minimal surfaces
HTML articles powered by AMS MathViewer
- by Kichoon Yang
- Proc. Amer. Math. Soc. 105 (1989), 706-711
- DOI: https://doi.org/10.1090/S0002-9939-1989-0953749-1
- PDF | Request permission
Abstract:
We prove that given any meromorphic function $f$ on a compact Riemann surface $M’$ there exists another meromorphic function $g$ on $M’$ such that $\left \{ {df,g} \right \}$ is the Weierstrass pair defining a complete conformal minimal immersion of finite total curvature into Euclidean $3$-space defined on $M’$ punctured at a finite set of points. As corollaries we obtain i) any compact Riemann surface can be immersed in Euclidean $3$-space as in the above with at most $4p + 1$ punctures, where $p$ is the genus of the Riemann surface; ii) any hyperelliptic Riemann surface of genus $p$ can be so immersed with at most $3p + 4$ punctures.References
- J. L. Barbosa and A. G. Colares, Minimal surfaces in ${\mathbb {R}^3}$, Lecture Notes in Math, Springer-Verlag, New York, 1986.
- Chi Cheng Chen and Fritz Gackstatter, Elliptische und hyperelliptische Funktionen und vollständige Minimalflächen vom Enneperschen Typ, Math. Ann. 259 (1982), no. 3, 359–369 (German). MR 661204, DOI 10.1007/BF01456948
- Shiing-shen Chern and Robert Osserman, Complete minimal surfaces in euclidean $n$-space, J. Analyse Math. 19 (1967), 15–34. MR 226514, DOI 10.1007/BF02788707
- Fritz Gackstatter and Rainer Kunert, Konstruktion vollständiger Minimalflächen von endlicher Gesamtkrümmung, Arch. Rational Mech. Anal. 65 (1977), no. 3, 289–297 (German). MR 448264, DOI 10.1007/BF00280446
- David A. Hoffman and William H. Meeks III, Complete embedded minimal surfaces of finite total curvature, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 1, 134–136. MR 766971, DOI 10.1090/S0273-0979-1985-15318-2
- Tilla Klotz and Leo Sario, Existence of complete minimal surfaces of arbitrary connectivity and genus, Proc. Nat. Acad. Sci. U.S.A. 54 (1965), 42–44. MR 178408, DOI 10.1073/pnas.54.1.42 H. B. Lawson, Jr., Lectures on minimal submanifolds, Publish or Perish, Berkeley, 1980.
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 105 (1989), 706-711
- MSC: Primary 53A10; Secondary 30F10
- DOI: https://doi.org/10.1090/S0002-9939-1989-0953749-1
- MathSciNet review: 953749