Simple near-rings associated with meromorphic products
HTML articles powered by AMS MathViewer
- by C. J. Maxson and K. C. Smith
- Proc. Amer. Math. Soc. 105 (1989), 564-574
- DOI: https://doi.org/10.1090/S0002-9939-1989-0963574-3
- PDF | Request permission
Abstract:
Let $H$ be a subgroup of ${G^2}$ and let \[ {M_0}\left ( {G,2,H} \right ) = \left \{ {f \in {M_0}\left ( G \right )|f(H) \subseteq H} \right \}.\] In this paper we characterize in terms of properties of $H$ when ${M_0}\left ( {G,2,H} \right )$ is a simple near-ring.References
- Peter Fuchs and C. J. Maxson, Near-fields associated with invariant linear $\kappa$-relations, Proc. Amer. Math. Soc. 103 (1988), no. 3, 729–736. MR 947647, DOI 10.1090/S0002-9939-1988-0947647-6
- Carlton J. Maxson and Kirby C. Smith, The centralizer of a group automorphism, J. Algebra 54 (1978), no. 1, 27–41. MR 511455, DOI 10.1016/0021-8693(78)90019-4
- J. D. P. Meldrum, Near-rings and their links with groups, Research Notes in Mathematics, vol. 134, Pitman (Advanced Publishing Program), Boston, MA, 1985. MR 854275
- Günter Pilz, Near-rings, 2nd ed., North-Holland Mathematics Studies, vol. 23, North-Holland Publishing Co., Amsterdam, 1983. The theory and its applications. MR 721171 R. Remak, Über die Darstellung der endlichen Gruppen als Untergruppen direkter Produkte, J. Reine Angew. Math. 163 (1930), 1-44. H. Wielandt, How to single out function near-rings, Oberwolfach Abstracts, 1972.
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 105 (1989), 564-574
- MSC: Primary 16A76
- DOI: https://doi.org/10.1090/S0002-9939-1989-0963574-3
- MathSciNet review: 963574