Covers of Dehn fillings on once-punctured torus bundles
HTML articles powered by AMS MathViewer
- by Mark D. Baker
- Proc. Amer. Math. Soc. 105 (1989), 747-754
- DOI: https://doi.org/10.1090/S0002-9939-1989-0964452-6
- PDF | Request permission
Abstract:
Let $M$ be a compact, orientable $3$-manifold that fibers over ${S^1}$ with fiber a once-punctured torus, ${T_0}$, and characteristic homeomorphism $h:{T_0} \to {T_0}$. We prove that for certain characteristic homeomorphisms, most Dehn fillings on $M$ yield manifolds with virturally ${\mathbf {Z}}$-representable fundamental groups.References
- Mark D. Baker, On certain branched cyclic covers of $S^3$, Geometry and topology (Athens, Ga., 1985) Lecture Notes in Pure and Appl. Math., vol. 105, Dekker, New York, 1987, pp. 43–46. MR 873282
- Mark D. Baker, The virtual $\textbf {Z}$-representability of certain $3$-manifold groups, Proc. Amer. Math. Soc. 103 (1988), no. 3, 996–998. MR 947696, DOI 10.1090/S0002-9939-1988-0947696-8
- M. Culler, W. Jaco, and H. Rubinstein, Incompressible surfaces in once-punctured torus bundles, Proc. London Math. Soc. (3) 45 (1982), no. 3, 385–419. MR 675414, DOI 10.1112/plms/s3-45.3.385
- W. Floyd and A. Hatcher, Incompressible surfaces in punctured-torus bundles, Topology Appl. 13 (1982), no. 3, 263–282. MR 651509, DOI 10.1016/0166-8641(82)90035-9
- John Hempel, Orientation reversing involutions and the first Betti number for finite coverings of $3$-manifolds, Invent. Math. 67 (1982), no. 1, 133–142. MR 664329, DOI 10.1007/BF01393377
- John Hempel, Coverings of Dehn fillings of surface bundles, Topology Appl. 24 (1986), no. 1-3, 157–170. Special volume in honor of R. H. Bing (1914–1986). MR 872487, DOI 10.1016/0166-8641(86)90058-1
- Shigeyuki Morita, Finite coverings of punctured torus bundles and the first Betti number, Sci. Papers College Arts Sci. Univ. Tokyo 35 (1986), no. 2, 109–121. MR 847882
- Dale Rolfsen, Knots and links, Mathematics Lecture Series, No. 7, Publish or Perish, Inc., Berkeley, Calif., 1976. MR 0515288 W. Thurston, The geometry and topology of $3$-manifolds, Xeroxed notes, Princeton University.
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 105 (1989), 747-754
- MSC: Primary 57M10; Secondary 57M25
- DOI: https://doi.org/10.1090/S0002-9939-1989-0964452-6
- MathSciNet review: 964452