A COMBINATORIAL CHARACTERIZATION OF $S^3 \times S^1$
AMONG CLOSED 4-MANIFOLDS

ALBERTO CAVICCHIOLI

(Communicated by James E. West)

Abstract. The topological product $S^3 \times S^1$ is proved to be the unique closed connected 4-manifold of regular genus one. As a consequence, the complex projective plane $\mathbb{C}P^2$ has regular genus two.

1. Crystallizations

Throughout the paper we work in the piecewise-linear (PL) category in the sense of [RS]. The prefix PL will always be omitted. Manifolds are assumed to be connected and compact. As general reference for graph theory see [H, and W]. We shall use the term graph instead of multigraph, hence loops are forbidden but multiple edges are allowed.

An edge-coloration c on a graph $G = (V(G),E(G))$ is a map $c: E(G) \to C$ (where C is a finite nonempty set, called the colour set) such that $c(e) \neq c(f)$ for any two adjacent edges $e, f \in E(G)$. An $(n+1)$-coloured graph is a pair (G,c) where G is a graph, regular of degree $n+1$, and $c: E(G) \to \Delta_n = \{0,1,\ldots,n\}$ is an edge-coloration on G. If $\Gamma \subseteq \Delta_n$, then we set $G_{\Gamma} = (V(G),c^{-1}(\Gamma))$. If \bar{i} denotes the set $\Delta_n - \{i\}$, then (G,c) is said to be contracted if $G_{\bar{i}}$ is connected for each $i \in \Delta_n$. If $\Gamma = \{i,j\} \subseteq \Delta_n$ (resp. $\Gamma = \{r,s,t\} \subseteq \Delta_n$), then g_{ij} (resp. g_{rst}) represents the number of components of G_{Γ}. The n-dimensional pseudocomplex $K = K(G)$ (see [HW, p. 49], associated with (G,c) is defined as follows: (1) take an n-simplex $A^n(v)$ for each vertex $v \in V(G)$ and label its vertices by Δ_n; (2) if v,w are joined in G by an i-coloured edge, then identify the $(n-1)$-faces of $A^n(v)$ and of $A^n(w)$ opposite to the vertex labelled by i so that equally labelled vertices coincide. By abuse of language we call simplexes the balls of K, as each h-ball of K is actually isomorphic to a standard h-simplex. For each $\Gamma \subseteq \Delta_n$ with
COMBINATORIAL CHARACTERIZATION OF $S^3 \times S^1$

\[\# \Gamma = h \leq n , \] there is a bijection between the set of components of G_h and the set of $(n-h)$-simplexes of K whose vertices are labelled by $\Delta_n - \Gamma$. Note that, if (G,c) is contracted, then K has exactly $n+1$ vertices.

Now let A be a simplex of K. Then the **disjoined star** $\text{std}(A,K)$ is defined as the disjoint union of the n-simplexes of K containing A with re-identification of the $(n-1)$-faces containing A and of their faces. The **disjoined link** is the subcomplex $\text{lk}_d(A,K) = \{ B \in \text{std}(A,K) | A \cap B = \emptyset \}$. The polyhedron $|K|$ is a closed n-manifold iff $\text{lk}_d(A^h,K)$ is a combinatorial $(n-h-1)$-sphere for each h-simplex $A^h \in K$. A **crystallization** of a closed n-manifold M is a contracted $(n+1)$-coloured graph (G,c) such that $|K(G)|$ is homeomorphic to M. Moreover we say that $K(G)$ is a **contracted triangulation** of M and that (G,c) **represents** M and every homeomorphic space. Each closed n-manifold can be represented by a crystallization (see [P]). For a general survey on crystallizations see [FGG].

2. **Regular genus**

Following [G2], we state the definition of the regular genus for a closed n-manifold. A **2-cell imbedding** (see [W]) $\alpha: |G| \to F$ of an $(n+1)$-coloured graph (G,c) into a closed surface F is said to be regular iff there is a cyclic permutation $\varepsilon = (\varepsilon_0, \varepsilon_1, \ldots, \varepsilon_n)$ of Δ_n such that each region of α is bounded by the image of a cycle of G with edges alternatively coloured by $\varepsilon_i, \varepsilon_{i+1}$ (i being an integer mod $n+1$). The **regular genus** $g(G)$ of G is the smallest integer h such that (G,c) regularly imbeds into a closed surface of genus h. The **regular genus** $g(M)$ of a closed n-manifold M is defined as the nonnegative integer

\[
g(M) = \min\{g(G) | (G,c) \text{ is a crystallization of } M \}.
\]

Given an $(n+1)$-coloured graph (G,c), call p the order of G divided by 2. If G is bipartite (resp. nonbipartite), for each cyclic permutation $\varepsilon = (\varepsilon_0, \varepsilon_1, \ldots, \varepsilon_n)$ of Δ_n there exists exactly one regular imbedding $\alpha: |G| \to F_\varepsilon$, where F_ε is the orientable (resp. nonorientable) closed surface with Euler characteristic

\[\chi_\varepsilon = \sum_{i \in \mathbb{Z}_{n+1}} q_{\varepsilon_i, \varepsilon_{i+1}} + (1 - n)p \]

(see [G1, Proposition 19]).

All closed n-manifolds or regular genus zero are proved to be homeomorphic to the n-sphere S^n (see [FG, Main Theorem]). In the present paper, we are interested in closed 4-manifolds of regular genus one. Further results about closed 4-manifolds of regular genus greater than one will appear in a subsequent paper of the author.
3. Main results

Now we state our Main Theorem.

Main Theorem. Let M^4 be a closed 4-manifold. Then $g(M^4) = 1$ if and only if M^4 is homeomorphic to $S^3 \times S^1$.

Corollary. If CP^2 is the complex projective plane, then $g(CP^2) = 2$.

In order to prove these statements we need three lemmas and some preliminary constructions. Let (G, c) be a crystallization of a closed 4-manifold M, $K = K(G)$ the associated contracted triangulation of M, and $\{v_i / i \in \Delta_4\}$ the vertex-set of K. We may assume that v_i corresponds to G_i for each $i \in \Delta_4$. If $\{i,j\} = \Delta_4 - \{r,s,t\}$, then $K(i,j)$ (resp. $K(r,s,t)$) denotes the subcomplex of K generated by the vertices v_i and v_j (resp. v_r, v_s and v_t). Obviously the number of edges (resp. triangles) of $K(i,j)$ (resp. $K(r,s,t)$) equals g_{rst} (resp. g_{ij}). If $Sd K$ is the first barycentric subdivision of K, let $H(i,j)$ be the largest subcomplex of $Sd K$, disjoint from $Sd K(i,j) \cup Sd K(r,s,t)$. Then the polyhedron $H(i,j)$ is a closed 3-manifold $F(i,j)$ which splits M into two complementary 4-manifolds $N(i,j)$ and $N(r,s,t)$ having $F(i,j)$ as common boundary. Furthermore $N(i,j)$, $N(r,s,t)$ are regular neighbourhoods in M of $|Sd K(i,j)|$, $|Sd K(r,s,t)|$ respectively.

Lemma 1. Let (G, c) be a crystallization of a closed 4-manifold M. For each triple (r,s,t) of distinct elements of Δ_4, we have

$$2g_{rst} = g_{rs} + g_{st} + g_{tr} - p. \tag{1}$$

Proof. If $\{i,j,k\} \subseteq \Delta_4$, then $q_h(i,j)$ (resp. $q_h(i,j,k)$) denotes the number of h-simplexes of K containing v_i and v_j (resp. v_i, v_j and v_k) as their vertices. If $\{i,j\} = \Delta_4 - \{r,s,t\}$, then it is easily proved that

$$q_1(i,j) = g_{rst},$$
$$q_2(i,j) = q_2(i,j,t) + q_2(i,j,r) + q_2(i,j,s) = g_{rs} + g_{st} + g_{tr},$$
$$q_3(i,j) = 3p \quad \text{and} \quad q_4(i,j) = 2p.$$

Let now e be an arbitrary edge of $K(i,j)$. Then the Euler characteristic $\chi(e)$ of $\lkd(e, K)$ is given by

$$2 = \chi(e) = q_2(e) - q_3(e) + q_4(e), \quad \text{where} \quad q_h(e) \quad \text{is the number of} \quad h\text{-simplexes of} \quad K \quad \text{containing} \quad e \quad \text{as their face.}$$

Summation over the edges of $K(i,j)$ gives

$$2g_{rst} = 2q_1(i,j) = q_2(i,j) - q_3(i,j) + q_4(i,j) = g_{rs} + g_{st} + g_{tr} - p \quad \text{as claimed.} \quad \Box$$

Now we assume that (G, c) regularly imbeds into the closed orientable surface of genus $g = g(M)$ and of Euler characteristic

$$g_{01} + g_{12} + g_{23} + g_{34} + g_{40} - 3p = 2 - 2g. \tag{2}$$

Each subgraph G_i ($i \in \Delta_4$) regularly imbeds into an orientable closed surface since G_i represents the combinatorial 3-sphere $\lkd(v_i, K)$. Then we can define
the nonnegative integer \(g_i \) \((i \in \Delta_4)\) as follows (see §2)

\[
\begin{align*}
(3) & \quad g_{12} + g_{23} + g_{34} + g_{41} - 2p = 2 - 2g_0, \\
(4) & \quad g_{02} + g_{23} + g_{34} + g_{40} - 2p = 2 - 2g_1, \\
(5) & \quad g_{01} + g_{13} + g_{34} + g_{40} - 2p = 2 - 2g_2, \\
(6) & \quad g_{01} + g_{12} + g_{24} + g_{40} - 2p = 2 - 2g_3, \\
(7) & \quad g_{01} + g_{12} + g_{23} + g_{30} - 2p = 2 - 2g_4.
\end{align*}
\]

By substituting each relation \((k)\), \(3 \leq k \leq 7\), into (2) and by using (1), we get

\[
\begin{align*}
(8) & \quad g_{14} = g_{014} + g - g_0, \\
(9) & \quad g_{02} = g_{012} + g - g_1, \\
(10) & \quad g_{13} = g_{123} + g - g_2, \\
(11) & \quad g_{24} = g_{234} + g - g_3, \\
(12) & \quad g_{03} = g_{034} + g - g_4.
\end{align*}
\]

As a direct consequence, the inequalities \(g \geq g_i \geq g(G_i) \) hold for each color \(i \in \Delta_4 \).

Lemma 2. With the above notation, we have

\[
\begin{align*}
(13) & \quad g_{134} = 1 + g - g_0 - g_2, \\
(14) & \quad g_{124} = 1 + g - g_0 - g_3, \\
(15) & \quad g_{024} = 1 + g - g_1 - g_3, \\
(16) & \quad g_{023} = 1 + g - g_1 - g_4, \\
(17) & \quad g_{013} = 1 + g - g_2 - g_4, \\
(18) & \quad g_{012} + g_{014} + g_{034} + g_{123} + g_{234} = 4 + p + g - \sum g_i, \\
(19) & \quad g_{02} + g_{03} + g_{13} + g_{14} + g_{24} = 4 + 6g + p - 2\sum g_i, \\
(20) & \quad \chi(M) = 2 - 2g + \sum g_i.
\end{align*}
\]

Proof. For each pair \((i, j) \in \{(0, 2), (0, 3), (1, 3), (1, 4), (2, 4)\}\), we get the formula \((11 + i + j)\) of the statement by simply adding the relations \((3 + i), (3 + j)\) and by using (1). Summation directly gives

\[
\begin{align*}
(21) & \quad g_{134} + g_{124} + g_{024} + g_{023} + g_{013} = 5 + 5g - 2\sum g_i.
\end{align*}
\]

Adding the following relations (see Lemma 1): \(2g_{013} = g_{01} + g_{13} + g_{30} - p\), \(2g_{024} = g_{02} + g_{24} + g_{40} - p\), \(2g_{023} = g_{02} + g_{23} + g_{30} - p\), \(2g_{134} = g_{13} + g_{34} + g_{41} - p\), \(2g_{124} = g_{12} + g_{24} + g_{41} - p\) and making use of (2) and (21), we obtain formula (19).
Substituting formula (1) into (2) easily gives

\[(22) \quad g_{123} + g_{034} - g_{013} + g_{01} - p = 1 - g,\]
\[(23) \quad g_{012} + g_{234} - g_{024} + g_{04} - p = 1 - g,\]
\[(24) \quad g_{014} + g_{234} - g_{124} + g_{12} - p = 1 - g,\]
\[(25) \quad g_{034} + g_{012} - g_{023} + g_{23} - p = 1 - g,\]
\[(26) \quad g_{014} + g_{123} - g_{134} + g_{34} - p = 1 - g.\]

Adding these relations and using (2), (21) gives formula (18). Now call \(q_h\) \((h \in \Delta_4)\) the number of \(h\)-simplexes of \(K = K(G)\). By construction, we have

\[q_0 = 5, \quad q_1 = \sum_{r,s,t} g_{rst}, \quad q_2 = \sum_{i,j} g_{ij}, \quad q_3 = 5p \quad \text{and} \quad q_4 = 2p.\]

Then the Euler characteristic \(\chi(M)\) of \(M = |K|\) is given by

\[
\chi(M) = \sum_h (-1)^h q_h = 5 - \sum_r g_{rst} + \sum_i g_{ij} - 3p
\]
\[
= 5 - \left(4 + p + g - \sum_i g_i + 5 + 5g - 2\sum_i g_i\right)
\]
\[
+ \left(3p + 2 - 2g + 4 + 6g + p - 2\sum_i g_i\right) - 3p
\]
\[
= 2 - 2g + \sum_i g_i. \quad \square
\]

Lemma 3. If \(g = 1\), then we have \(g_i = 0\) for each \(i \in \Delta_4\), \(\beta_0 = \beta_1 = \beta_3 = \beta_4 = 1\), and \(\beta_2 = 0\), where \(\beta_k\) is the \(k\)th Betti number of \(M\).

Proof. If \(g = 1\), then \(M\) is orientable since the regular genus of a closed nonorientable 4-manifold is an even positive number (see [G2, Corollary 8]). By Lemma 2, it suffices to prove that the sum \(R = g_{013} + g_{023} + g_{024} + g_{124} + g_{134}\) equals 10. By (21), Lemma 2 and \(g_i \leq 1\) \((i \in \Delta_4)\), the inequalities \(6 \leq R = 10 - 2\sum_i g_i \leq 10\) hold, whence \(R \in \{6, 8, 10\}\). Now we show that the cases \(R = 6\) or \(R = 8\) give a contradiction.

(1) If \(R = 6\), then we must have that one of the terms of \(R\) is 2 and the other four terms are 1 since \(g_{rst} \geq 1\).

Now we first suppose \(g_{134} = 2\), so that \(g_{013} = g_{023} = g_{024} = g_{124} = 1, g_0 = g_1 = g_2 = 0\) and \(g_3 = g_4 = 1\) by Lemma 2. Since \(g_{124} = 1\), \(K(0, 3)\) consists of exactly one edge, hence \(N(0, 3)\) is a 4-ball. Furthermore \(K(1, 4)\) and \(K(2, 4)\) are also formed by one edge each since \(g_{023} = g_{013} = 1\). Thus all triangles of \(K(1, 2, 4)\) have two edges in common. Since \(g_{034} - g_{03} = g_4 - g = 0\), \(K(1, 2, 4)\) consists of as many triangles as there are edges in \(K(1, 2)\). Therefore \(K(1, 2, 4)\) is a cone over the 1-pseudocomplex \(K(1, 2)\). Then the polyhedron \(|K(1, 2, 4)|\) is contractible, \(N(1, 2, 4)\) is a 4-ball and \(M\) is homeomorphic to \(S^4\). This contradicts the fact that \(g(M)\) is not zero and also proves that
$g_{024} = 2$ is impossible. In the other three possible cases, i.e., $g_{013} = 2$, $g_{124} = 2$, or $g_{023} = 2$, we repeat the above arguments replacing the pair $(K(0,3), K(1,2,4))$ with $(K(1,4), K(0,2,3))$, $(K(0,2), K(1,3,4))$, and $(K(2,4), K(0,1,3))$, respectively.

$(//)$ If $R = 8$, then $\sum_i g_i = 1$ implies $\chi(M) = 1$ (see (20)). Since at least one of the g_{ijk}'s in R equals 1, the fundamental group $\prod_1(M)$ of M is null (see [G3]). Thus we have $\beta_0 = \beta_4 = 1$, $\beta_1 = \beta_3 = 0$, hence $\chi(M) = 2 + \beta_2 \geq 2$, which is a contradiction.

Now the result $R = 10$ (hence $\sum_i g_i = 0$) directly implies $\chi(M) = 0$ and $g_i = 0$ for each $i \in \Delta_4$. Furthermore the equalities $\chi(M) = 0$ and $g_{013} = 2$ give $\prod_1(M) \simeq \mathbb{Z}$ (compare again [G3]), $\beta_0 = \beta_1 = \beta_3 = \beta_4 = 1$, and $\beta_2 = 0$. This concludes the proof. \clubsuit

4. Proof of main theorem

If M^4 is homeomorphic to $S^3 \times S^1$, then $g(M) = 1$ as proved in [FG, Corollary 1]. Now we prove the converse implication. Since $g_{024} = 2$ (by Lemma 3 and (15)), $K(1,3)$ consists of exactly two edges, hence $N(1,3)$ is homeomorphic to $S^1 \times B^3$, B^3 being a 3-ball. Since $g_{134} = g_{013} = 2$, $K(0,2)$, and $K(2,4)$ are also formed by exactly two edges each. Furthermore $K(0,2,4)$ has one more triangle than there are edges in $K(0,4)$ since $g_{13} = 0$ (by Lemma 3 and (10)).

Call A_1, A_2 the two triangles of $K(0,2,4)$ which have a common edge $e \in K(0,4)$ as their face. Then $K(0,2,4)$ collapses to the subcomplex $\overline{K} = K(0,2) \cup K(2,4) \cup \{A_1, A_2\}$. If $\partial A_1 \neq \partial A_2$, it is very easy to see that \overline{K} collapses to a 1-sphere S^1, hence $N(0,2,4)$ is homeomorphic to $S^1 \times B^3$. If $\partial A_1 = \partial A_2$, then \overline{K} is homotopy equivalent to $S^1 \vee S_1 \vee S_2$ (where $X \vee Y$ means the one-point union of X and Y), S^1_i, $i = 1,2$, (resp. S^2_2) being a 1-sphere (resp. 2-sphere). In the latter case, we would have $\beta_2 \geq 1$ which contradicts $\beta_2 = 0$ (see Lemma 3). Therefore we have $N(1,3) \simeq N(0,2,4) \simeq S^1 \times B^3$, $\partial N(1,3) = \partial N(0,2,4) \simeq S^1 \times S^2$, whence $M = N(1,3) \cup N(0,2,4) \simeq S^3 \times S^1$ by Theorem 2 of [M].

Proof of Corollary. The genus of CP^2 is proved to be ≤ 2 (see [FGG, p. 134]) by constructing a simple crystallization of CP^2 with regular genus two. Thus the statement follows from our Main Theorem. \square

Note. It is easily proved that the regular genus is subadditive, by direct construction. Thus the connected sum $(S^3 \times S^1) \# (S^3 \times S^1)$ also has regular genus two from our Main Theorem.
REFERENCES

DEPARTIMENTO DI MATEMATICA PURA ED APPLICATA “G. VITALI”, UNIVERSITA’ DI MODENA, VIA CAMPI 213/B, 41100 MODENA, ITALY