The variety of pairs of matrices with rank$(AB-BA)\leq 1$
HTML articles powered by AMS MathViewer
- by Michael G. Neubauer
- Proc. Amer. Math. Soc. 105 (1989), 787-792
- DOI: https://doi.org/10.1090/S0002-9939-1989-0931743-4
- PDF | Request permission
Abstract:
We will show that the variety of pairs of $n \times n$ matrices over an algebraically closed field with rank one commutator consists of $n - 1$ irreducible components each of dimension ${n^2} + 2n - 1$.References
- Murray Gerstenhaber, On dominance and varieties of commuting matrices, Ann. of Math. (2) 73 (1961), 324–348. MR 132079, DOI 10.2307/1970336
- Robert M. Guralnick, A note on pairs of matrices with rank one commutator, Linear and Multilinear Algebra 8 (1979/80), no. 2, 97–99. MR 552353, DOI 10.1080/03081087908817305
- Klaus Hulek, A remark on certain matrix varieties, Linear and Multilinear Algebra 10 (1981), no. 3, 169–172. MR 630145, DOI 10.1080/03081088108817409
- Thomas J. Laffey, Simultaneous triangularization of matrices—low rank cases and the nonderogatory case, Linear and Multilinear Algebra 6 (1978/79), no. 4, 269–305. MR 515915, DOI 10.1080/03081087808817249
- Peter Lancaster and Miron Tismenetsky, The theory of matrices, 2nd ed., Computer Science and Applied Mathematics, Academic Press, Inc., Orlando, FL, 1985. MR 792300
- T. S. Motzkin and Olga Taussky, Pairs of matrices with property $L$. II, Trans. Amer. Math. Soc. 80 (1955), 387–401. MR 86781, DOI 10.1090/S0002-9947-1955-0086781-5
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 105 (1989), 787-792
- MSC: Primary 14A25; Secondary 14A10, 15A30
- DOI: https://doi.org/10.1090/S0002-9939-1989-0931743-4
- MathSciNet review: 931743