A splitting theorem for complete manifolds with nonnegative curvature operator
HTML articles powered by AMS MathViewer
- by Maria Helena Noronha
- Proc. Amer. Math. Soc. 105 (1989), 979-985
- DOI: https://doi.org/10.1090/S0002-9939-1989-0933519-0
- PDF | Request permission
Abstract:
It is shown that any complete, noncompact, simply connected Riemannian manifold with nonnegative curvature operator is isometric to the product of its compact soul (in the sense of Cheeger-Gromoll) and a complete manifold diffeomorphic to a Euclidean spaceReferences
- Jeff Cheeger and David G. Ebin, Comparison theorems in Riemannian geometry, North-Holland Mathematical Library, Vol. 9, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975. MR 0458335
- Jeff Cheeger and Detlef Gromoll, On the structure of complete manifolds of nonnegative curvature, Ann. of Math. (2) 96 (1972), 413–443. MR 309010, DOI 10.2307/1970819 B. Chow and D. Yang, A classification of compact Riemannian manifolds with nonnegative curvature operator, preprint.
- S. Gallot and D. Meyer, Opérateur de courbure et laplacien des formes différentielles d’une variété riemannienne, J. Math. Pures Appl. (9) 54 (1975), no. 3, 259–284 (French). MR 454884
- Robert Hermann, On the differential geometry of foliations, Ann. of Math. (2) 72 (1960), 445–457. MR 142130, DOI 10.2307/1970226
- Norbert Kleinjohann and Rolf Walter, Nonnegativity of the curvature operator and isotropy for isometric immersions, Math. Z. 181 (1982), no. 1, 129–142. MR 671719, DOI 10.1007/BF01214986
- Barrett O’Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459–469. MR 200865
- Martin Strake, A splitting theorem for open nonnegatively curved manifolds, Manuscripta Math. 61 (1988), no. 3, 315–325. MR 949821, DOI 10.1007/BF01258442 V. A. Toponogov, Spaces with straight lines, Amer. Math. Soc. Transl. 37 (1964), 287-290.
- Gerard Walschap, A splitting theorem for $4$-dimensional manifolds of nonnegative curvature, Proc. Amer. Math. Soc. 104 (1988), no. 1, 265–268. MR 958080, DOI 10.1090/S0002-9939-1988-0958080-5
- Alan Weinstein, Positively curved $n$-manifolds in $R^{n+2}$, J. Differential Geometry 4 (1970), 1–4. MR 264562
- Jin-Whan Yim, Distance nonincreasing retraction on a complete open manifold of nonnegative sectional curvature, Ann. Global Anal. Geom. 6 (1988), no. 2, 191–206. MR 982765, DOI 10.1007/BF00133039 —, Space of souls in a complete open manifold of nonnegative curvature, preprint.
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 105 (1989), 979-985
- MSC: Primary 53C20
- DOI: https://doi.org/10.1090/S0002-9939-1989-0933519-0
- MathSciNet review: 933519