ALGEBRAS OF HOLOMORPHIC FUNCTIONS BETWEEN H^p AND N.

NOZOMU MOCHIZUKI

(Communicated by Paul S. Muhly)

Abstract. For the algebra N^p, $p > 1$, introduced by Stoll with the notation $(\log^+ H)^*$ in [5], a characterization of the outer functions will be given, which can be used to derive results analogous to those of N. [4].

1. The algebra N^p

In this section, some introductory remarks will be made. Let U and T denote the unit disk in \mathbb{C} and the unit circle. For $\phi \in L^1(T)$, a holomorphic function $H[\phi]$ is defined by

$$H[\phi](z) = (2\pi)^{-1} \int_0^{2\pi} H(z, e^{it}) \phi(e^{it}) dt \quad (z \in U),$$

where $H(z, e^{it}) = (e^{it} + z)(e^{it} - z)^{-1}$. Note that $H = P + iQ$, with P the Poisson kernel. $P[\phi]$ will denote the Poisson integral. We denote by N^p, for $p > 1$, the class of functions f holomorphic in U and satisfying

$$\sup_{0 < r < 1} \int_0^{2\pi} (\log^+ |f(re^{it})|)^p dt < +\infty.$$

If $f \in N^p$, then $\log(1 + |f^*|) \in L^p(T)$ and

$$(1) \quad (\log(1 + |f(w)|))^p \leq P[(\log(1 + |f^*|))^p](w) \quad (w \in U),$$

where f^* is the boundary function of f on T. Under the metric d_p, defined for $f, g \in N^p$ by

$$d_p(f, g) = \left((2\pi)^{-1} \int_0^{2\pi} \left(\log(1 + |f^*(e^{it}) - g^*(e^{it})|) \right)^p dt \right)^{1/p},$$

N^p becomes an F-algebra. For $f \in N^p$, (1) implies that

$$(2) \quad \log(1 + |f(w)|) \leq 2^{1/p} d_p(f, 0)(1 - |w|)^{-1/p} \quad (w \in U).$$
It is known that

\[N^q \subset N^p \ (q > p), \quad \bigcup_{p > 0} H^p \subset \bigcap_{p > 1} N^p, \quad \text{and} \quad \bigcup_{p > 1} N^p \subset N_*, \]

where the first containment is proper. To see that the second is proper, let \(\phi(e^{it}) = (\log t)^2 \) (\(t \in (0, 2\pi) \)). Then \(\phi \in L^p(T) \) for all \(p > 1 \) and \(e^\phi \notin L^p(T) \) for any \(p > 0 \). Define \(f \) by \(f(z) = \exp(H[\phi](z)) \) (\(z \in U \)). Since \((\log^+ |f(z)|)^p \leq P[\phi](z) \), we have \(f \in N^p \) for all \(p > 1 \). On the other hand, \(|f^*| = e^\phi \) a.e. on \(T \) implies that \(f \notin H^p \), for \(p > 0 \). Next let \(\psi(e^{it}) = t^{-1}(1 + |\log t|)^{-2} \) (\(t \in (0, 2\pi) \)) and define \(f \) by \(f(z) = \exp(H[\psi](z)) \). Since \(\psi \in L^1(T) \) and \(\log^+ |f(z)| = P[\psi](z) \), the uniform integrability of the functions \(\{\log^+ |f_r(e^{it})| : 0 < r < 1\} \) follows, i.e., \(f \in N_* \), and \(\log^+ |f^*| = \psi \notin L^p(T), \ p > 1 \), implies \(f \notin N^p, \ p > 1 \). Thus the third containment is also proper.

If \(f' \in H^p, \ 0 < p < 1 \), then \(f \in H^q \) with \(q = p(1-p)^{-1} \) (Hardy-Littlewood, [1]). On the other hand, \(f' \in N \) does not imply \(f \in N \) (Hayman, [3]). Further, \(f' \in N_* \) does not imply \(f \in N \) (Yanagihara, [6]). In contrast to \(H^p, \ N_* \), and \(N \), the class \(N^p \) has the following property: If \(f' \in N^p \), then \(f \in N^p \). If \(q > p \), then there exists \(f \) such that \(f' \in N^p \), yet \(f \notin N^q \). The former is easily seen by a maximal function argument [3, p. 183]. To see the latter, let \(f(z) = \exp((1-z)^{-\alpha}) \) (\(z \in U \)) with \(q^{-1} < \alpha < p^{-1} \). Since \((1-z)^{-\alpha} \in H^p \), we have \(f \in N^p \) and hence \(f'(z) = \alpha f(z)(1-z)^{-\alpha-1} \in N^p \). Let \(M_\infty(f; r) = \max\{|f(z)| : |z| = r\} \). Then \(\log^+ M_\infty(f; r) = (1-r)^{-\alpha} \) (\(0 < r < 1 \)), and hence \((1-r)^{1/q} \log^+ M_\infty(f; r) \to +\infty \) as \(r \to 1 \). It follows from (2) that \(f \notin N^q \).

2. Algebra homomorphisms

By the same argument as in [4], we can prove that if \(\gamma \) is a nontrivial multiplicative linear functional on \(N^p \), then there exists \(\lambda \in U \) such that \(\gamma(f) = f(\lambda) \) (\(f \in N^p \)) and \(\gamma \) is continuous, by (2). This fact will be used to see part (4) of the following Theorem 1.

Let \(\Psi: U \to U \) be a holomorphic map. For \(f \) holomorphic on \(U \), we define \(C_{\Psi}f \) by

\[(C_{\Psi}f)(z) = (f \circ \Psi)(z) \quad (z \in U). \]

Theorem 1. (3) Let \(\Psi: U \to U \) be holomorphic. Then, for \(q \geq p \), \(C_{\Psi}: N^q \to N^p \) is a continuous algebra homomorphism.

(4) Suppose \(\Gamma: N^q \to N^p \) is a nontrivial algebra homomorphism. Then there exists \(\Psi: U \to U \), holomorphic, such that \(\Gamma f = C_{\Psi}f \) (\(f \in N^q \)). Hence, if \(q \geq p \), then \(\Gamma \) is continuous.

(5) Suppose \(\Gamma: N^q \to N^p \) is an algebra homomorphism onto \(N^p \). Then \(p = q \) and \(\Gamma \) is an isomorphism. The map \(\Psi: U \to U \), determined by \(\Gamma \), is a conformal map onto \(U \) and \(\Gamma^{-1} = C_{\Psi^{-1}} \).
Proof. (3) Let \(f \in N^q \). Then from (1) with \(w = \Psi(z) \), (2.5) in [4], and Hölder's inequality we have, for \(0 < r < 1 \),

\[
\begin{align*}
(2\pi)^{-1} \int_0^{2\pi} (\log(1 + |(f \circ \Psi)(re^{i\theta})|))^{p} \, d\theta \\
\leq \frac{1 + |\Psi(0)|}{1 - |\Psi(0)|} \left((2\pi)^{-1} \int_0^{2\pi} (\log(1 + |f^*(e^{i\theta})|))^{q} \, d\theta \right)^{p/q}.
\end{align*}
\]

This shows that \(f \circ \Psi \in N^p \) and, at the same time, that \(d_p(C_\Psi f, 0) \leq K d_q(f, 0) \) with a constant \(K \) independent of \(f \). Thus \(C_\Psi \) is continuous. (4) This part is the same as in [4]. (5) \(\Gamma \) is written in the form \(\Gamma = C_\Phi \), by (4). \(\Psi(U) \) is a nonempty open subset of \(U \), so \(C_\Psi \) is one-to-one and \(\Gamma^{-1} = C_\Phi \) with a holomorphic map \(\Phi: U \to U \). From \(\Psi \circ \Phi = \Phi \circ \Psi = \text{identity} \), we see that \(\Psi \) is a conformal map of \(U \) onto \(U \). Finally, suppose \(q < p \) and let \(f(z) = \exp((1 - z)^{-\alpha}) \) with \(p^{-1} < \alpha < q^{-1} \). Then \(f \notin N^p \) and \(f \in N^q \), so \(C_\Psi f \in N^p \) by assumption. But we can conclude from (3) that \(f = C_\Phi(C_\Psi f) \) belongs to \(N^p \), a contradiction. From \(C_\Phi: N^p \to N^q \) we see that \(p \geq q \), as well.

3. Outer functions in \(N^p \)

It is well known that if \(f \in N_\ast \), then \(\log|f^*| \in L^1(T) \). \(f \in N^p \) does not imply, however, that \(\log|f^*| \in L^p(T) \), while \(\log^+|f^*| \in L^p(T) \). Indeed, \(f(z) = \exp(H[\psi]z)(z \in U) \) with \(\psi(e^{i\theta}) = -t^{-1/p} \) \((t \in (0,2\pi]) \) belongs to \(H^\infty \), but \(\log|f^*| \notin L^p(T) \). Now let

\[
f(z) = a \exp(H[\log \phi](z)) \quad (z \in U),
\]

where \(\phi(e^{i\theta}) \geq 0 \), \(\log \phi \in L^1(T) \), \(\log^+ \phi \in L^p(T) \), and \(a \in \mathbb{C} \) with \(|a| = 1 \). We shall call \(f \) an outer function in \(N^p \). If \(f \in N^p \), \(f \neq 0 \), then \(f \) admits the factorization: \(f = BSF \), as a function in \(N_\ast \), where \(B \) is the Blaschke product with respect to the zeros of \(f \), \(S \) is a singular inner function, and \(F \) is an outer function in \(N_\ast \). Here, since \(F = a \exp(H[\log|f^*|]) \), \(F \) becomes an outer function in \(N^p \). In \(N_\ast \), \(f \) is outer if and only if \(f^{-1} \notin N_\ast \). But an outer function in \(N^p \) is not necessarily invertible in \(N^p \), as is seen from the example \(f \) such that \(\log|f^*| \notin L^p(T) \).

Let \(f \in N^p \). If there is a sequence \(\{f_k\} \subset N^p \) such that \(f_k f \to 1 \) in \(N^p \) as \(k \to \infty \), we shall call \(\{f_k\} \) an approximate inverse of \(f \). This concept characterizes the outer functions in \(N^p \), as follows.

Theorem 2. Let \(f \in N^p \). Then \(f \) is outer if and only if \(f \) has an approximate inverse. When this is the case, \(f \) is approximated by invertible functions in \(N^p \).

Proof. Suppose first that \(f \) is outer in \(N^p \), with \(a = 1: f(z) = \exp(H[\log \phi](z))(z \in U) \). Let \(E_k = \{t \in [0,2\pi]|\phi(e^{it}) \geq k^{-1}\} \) and \(G_k = \{t|\phi(e^{it}) < k^{-1}\} \). Put \(\phi_k(e^{it}) = \phi(e^{it})^{-1} \) for \(t \in E_k \) and \(\phi_k(e^{it}) = 1 \) for \(t \in G_k \) \((k = 1,2,\ldots) \).
Then $\log \phi_k \in L^1(T)$ and $\log^+ \phi_k \in L^p(T)$, hence $f_k := \exp(H[\log \phi_k])$ belongs to N^p. Put $\psi_k(t) = 1$ for $t \in E_k$ and $\psi_k(e^{it}) = \phi(e^{it})$ for $t \in G_k$. Then $f_k(z)f(z) = \exp(H[\log \psi_k](z)) = \exp(P[\log \psi_k](z) + iv_k(z))$, where $v_k = Q[\log \psi_k]$. As $r \to 1$, with $z = re^{i\theta}$, we have $P[\log \psi_k]^*(e^{i\theta}) = \log \psi_k(e^{i\theta})$ for a.e. $\theta \in [0, 2\pi]$, and $v_k(e^{i\theta})$ also exists for a.e. θ [2, p. 103]. Thus $f_k^*(e^{i\theta})f^*(e^{i\theta}) = \psi_k(e^{i\theta})\exp(i\theta v_k(e^{i\theta}))$. Take q, $0 < q < 1$. By Theorem 4.2 in [1], we see that $M_q(\psi_k ; r) \leq C_q M_1(P[\log \psi_k] ; r) \leq C_q \|\log \psi_k\|_1$ ($0 < r < 1$), where C_q is a constant depending only on q, and hence $\|v_k\|_q \leq C_q \|\log \psi_k\|_1$, by Fatou's lemma. Since the right side tends to 0 as $k \to \infty$, by the dominated convergence theorem, a subsequence of $\{v_k\}$, denoted by the same symbol again, tends to 0 for a.e. $\theta \in [0, 2\pi]$. Hence $f_k^*(e^{i\theta})f^*(e^{i\theta}) \to 1$ as $k \to \infty$, for a.e. θ. Now from $\log(1 + |f_kf^* - 1|) \leq \log 3$, we conclude that $d_p(f_kf^*, 1) \to 0$.

Next suppose that $f \in N^p$ and $\{f_k\}$ is an approximate inverse of f. Then we have $f_k(z)f(z) \to 1$ ($z \in U$) as $k \to \infty$, so $f(z) \neq 0$ ($z \in U$). Thus the factorization of f is of the form $f = SF$, with S a singular inner function and F outer in N^p. It is enough to see that $S^{-1} \in N^p$, since this implies that S is a constant. Now we have $f_k f S^{-1} = f_k F \in N^p$ and $f_k(z)f(z) S^{-1}(z) \to S^{-1}(z)$ ($z \in U$) as $k \to \infty$. Since $|(S^{-1})^*| = 1$ a.e. on T, we see that $d_p(f_j f S^{-1}, f_k f S^{-1}) = d_p(f_j f, f_k f) \to 0$ as $j, k \to \infty$. Thus $\{f_k f S^{-1}\}$ converges to some $h \in N^p$, so $f_k(z)f(z) S^{-1}(z) \to h(z)$ ($z \in U$).

Finally, let f be outer in N^p and define f_k as above. Put $g_k = f_k^{-1}$. Then, since $\log^+ \phi_k^{-1} = \log^+ \phi \in L^p(T)$, we see that $g_k \in N^p$, i.e., g_k is invertible in N^p. Moreover, $|g_k^*(e^{i\theta})| = |f^*(e^{i\theta})|$ for $\theta \in E_k$ and $|g_k^*(e^{i\theta})| = 1$ for $\theta \in G_k$. Therefore, we have $|g_k^* - f^*| = |g_k^*||f_k^* - 1| \leq (|f^*| + 1)|f_k^* - 1|$, the right side tending to 0 as $k \to \infty$, a.e. on T. From $\log(1 + |g_k^* - f^*|) \leq \log(2 + 2|f^*|)$, we see that $d_p(g_k^*, f) \to 0$ as $k \to \infty$.

Remark. Let S be a singular inner function. Then S_r ($0 < r < 1$) is invertible in N^p, and $S_r \to S$ as $r \to 1$ (Theorem 4.2, [5]). This means that the converse of the second statement of Theorem 2 is not valid.

Corollary. Let $f \in N^p$. Then $f N^p$, the ideal generated by f, is dense in N^p if and only if f is outer.

4. Some ideals in N^p

Theorem 2 above enables us to deduce the following, which are analogues of Theorems 1 and 2 in [4].

Theorem 3. Let M be a nonzero prime ideal in N^p which is not dense in N^p. Then $M = M_\lambda := \{f \in N^p|f(\lambda) = 0\}$ for some $\lambda \in U$. Every closed maximal ideal is of the form M_λ.
Theorem 4. Let M be a nonzero closed ideal in N^p. Then there exists a unique (modulo constants) inner function I such that $M = IN^p$.

Proof. For the proof of Theorem 3, let $f \in M$, $f \neq 0$. Then $f = BSF$, where $F \notin M$ by the above corollary, so we have $BS \in M$. The remainder of the argument is completely analogous to that of [4]. For the proof of Theorem 4, let $f = BSF$, $f \in M$, $f \neq 0$. Take an approximate inverse \{\{f_k\}\} of F. Then $f_k f = BS(f_k F) \to BS$ as $k \to \infty$, so we have $BS \in M$ and hence $BS \in M \cap H^1$. The rest is the same as that of [4].

REFERENCES

College of General Education, Tohoku University, Kawauchi, Sendai 980, Japan