A NOTE ON THE DIFFERENTIAL EQUATIONS OF GLEICK-LORENZ

MORRIS W. HIRSCH

(Communicated by Kenneth R. Meyer)

Abstract. It is shown that for the Gleick-Lorenz equations, every solution in the positive octant blows up.

We consider the nonlinear system of differential equations

\[
\begin{align*}
\dot{x}_1 &= 10(x_2 - x_1) = F_1(x) \\
\dot{x}_2 &= x_1x_3 + 28x_1 - x_2 = F_2(x) \\
\dot{x}_3 &= x_1x_2 - (8/3)x_3 = F_3(x)
\end{align*}
\]

for \(x = (x_1, x_2, x_3) \) in the positive orthant \(\mathbb{R}^3_+ \), attributed to E. N. Lorenz by J. Gleick [Gleick 1987, p. 323]. Although Gleick describes their dynamics as chaotic [Gleick 1987, p. 30], in a simulation by C. Deno [Deno 1988] the forward orbit of any point other than the origin blows up. We rigorously verify this dynamic behavior.

For vectors \(u, f \) we write \(u > v \) in case \(u_i > v_i \) for all \(i \).

The system is cooperative in \(\mathbb{R}^3_+ \), i.e. \(\partial F_i/\partial x_j \geq 0 \) for \(i \neq j \). Therefore the Müller-Kamke theorem on differential inequalities implies that if \(x(t) \) and \(y(t) \) are solutions with \(x(0) > y(0) \geq 0 \) then \(x(t) > y(t) \) for all \(t \geq 0 \) at which both solutions are defined [Müller 1926, Kamke 1932; or see Coppel 1965].

It is easily verified that for any solution \(x(t) \) with \(x(0) > 0 \), there is a solution \(y(t) \) such that \(x(0) > y(0) > 0 \) and \(F(y(0)) > 0 \). It follows from the theory of cooperative systems that each \(y_i(t) \) is strictly increasing for \(t \geq 0 \) [Selgrade 1980]. Since there are no equilibria except the origin, \(y(t) \) cannot converge; therefore some \(y_i(t) \to \infty \) and \(\|y(t)\| \to \infty \). The Müller-Kamke theorem now implies \(\|x(t)\| \to \infty \).

For any solution \(z(t) \) with \(z(0) \geq 0, z \neq 0 \) it is easily seen that \(z(t) > 0 \) for all \(t > 0 \), and the preceding argument shows that \(\|z(t)\| \to \infty \).

It should be noted that these equations differ from those of [Lorenz 1963] in the sign of the term \(x_1x_3 \).

Received by the editors April 24, 1988.

1980 Mathematics Subject Classification (1985 Revision). Primary 34C11, 58F13.

©1989 American Mathematical Society

0002-9939/89 $1.00 + $.25 per page
References

Department of Mathematics, University of California, Berkeley, California 94720