Automorphisms of Grassmannians
HTML articles powered by AMS MathViewer
- by Michael J. Cowen
- Proc. Amer. Math. Soc. 106 (1989), 99-106
- DOI: https://doi.org/10.1090/S0002-9939-1989-0938909-8
- PDF | Request permission
Abstract:
For a complex vector space $\mathcal {V}$ of dimension $n$, the group of holomorphic automorphisms of the Grassmannian $\operatorname {Gr}(p,\mathcal {V})$ can be identified with the subgroup of ${\mathbf {P}}G1({\wedge ^p}\mathcal {V})$ preserving the Grassmannian. Using this, Chow showed $\operatorname {Aut} {\text {(Gr}}(p,\mathcal {V})) = {\mathbf {P}}\operatorname {Gl} (\mathcal {V})$ for $n \ne 2p$, and ${\mathbf {P}}G1(\mathcal {V})$ is a normal subgroup of index 2 in $\operatorname {Aut(Gr}(p,\mathcal {V}))$ for $n = 2p$. We prove a version of Chow’s result for a separable Hilbert space $\mathcal {H}$. Theorem. ${\mathbf {P}}\operatorname {Gl} (\mathcal {H})$ is the subgroup of ${\mathbf {P}}\operatorname {Gl} ({\wedge ^p}\mathcal {H})$ which preserves $\operatorname {Gr}(p,\mathcal {H})$. That is, if $R$ is an invertible linear operator on ${\wedge ^p}\mathcal {H}$ which preserves decomposable $p$-vectors, then there exists $S$, an invertible linear operator on $\mathcal {H}$, such that $R = {\wedge ^p}S$.References
- Wei-Liang Chow, On the geometry of algebraic homogeneous spaces, Ann. of Math. (2) 50 (1949), 32–67. MR 28057, DOI 10.2307/1969351
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157
- Wilhelm Kaup, Über die Automorphismen Grassmannscher Mannigfaltigkeiten unendlicher Dimension, Math. Z. 144 (1975), no. 2, 75–96. MR 404712, DOI 10.1007/BF01190938
- Hiroshi Tango, On the automorphisms of flag manifolds, Bull. Kyoto Univ. Ed. Ser. B 49 (1976), 1–9. MR 419470
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 106 (1989), 99-106
- MSC: Primary 14M15; Secondary 32M10
- DOI: https://doi.org/10.1090/S0002-9939-1989-0938909-8
- MathSciNet review: 938909