A semi-Fredholm principle for periodically forced systems with homogeneous nonlinearities
HTML articles powered by AMS MathViewer
- by A. C. Lazer and P. J. McKenna
- Proc. Amer. Math. Soc. 106 (1989), 119-125
- DOI: https://doi.org/10.1090/S0002-9939-1989-0942635-9
- PDF | Request permission
Abstract:
We show that if the potential in a second-order Newtonian system of differential equations is positively homogeneous of degree two and positive semidefinite, and if the unforced system has no nontrivial $T$-periodic solutions $(T > 0)$, then for any continuous $T$-periodic forcing, there is at least one $T$-periodic solution.References
- Klaus Deimling, Nonlinear functional analysis, Springer-Verlag, Berlin, 1985. MR 787404, DOI 10.1007/978-3-662-00547-7
- Jerry L. Kazdan and F. W. Warner, Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math. 28 (1975), no. 5, 567–597. MR 477445, DOI 10.1002/cpa.3160280502
- A. C. Lazer and P. J. McKenna, Critical point theory and boundary value problems with nonlinearities crossing multiple eigenvalues. II, Comm. Partial Differential Equations 11 (1986), no. 15, 1653–1676. MR 871108, DOI 10.1080/03605308608820479
- A. C. Lazer and P. J. McKenna, Large scale oscillatory behaviour in loaded asymmetric systems, Ann. Inst. H. Poincaré Anal. Non Linéaire 4 (1987), no. 3, 243–274 (English, with French summary). MR 898049
- A. C. Lazer and P. J. McKenna, A symmetry theorem and applications to nonlinear partial differential equations, J. Differential Equations 72 (1988), no. 1, 95–106. MR 929199, DOI 10.1016/0022-0396(88)90150-7
- N. G. Lloyd, Degree theory, Cambridge Tracts in Mathematics, No. 73, Cambridge University Press, Cambridge-New York-Melbourne, 1978. MR 0493564
- P. J. McKenna and W. Walter, Nonlinear oscillations in a suspension bridge, Arch. Rational Mech. Anal. 98 (1987), no. 2, 167–177. MR 866720, DOI 10.1007/BF00251232
- E. Podolak, On the range of operator equations with an asymptotically nonlinear term, Indiana Univ. Math. J. 25 (1976), no. 12, 1127–1137. MR 425698, DOI 10.1512/iumj.1976.25.25089
- Helmut Schaefer, Über die Methode der a priori-Schranken, Math. Ann. 129 (1955), 415–416 (German). MR 71723, DOI 10.1007/BF01362380
- Klaus Schmitt, Periodic solutions of nonlinear second order differential equations, Math. Z. 98 (1967), 200–207. MR 213653, DOI 10.1007/BF01112414
- E. N. Dancer, On the Dirichlet problem for weakly non-linear elliptic partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A 76 (1976/77), no. 4, 283–300. MR 499709, DOI 10.1017/S0308210500019648
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 106 (1989), 119-125
- MSC: Primary 34C25; Secondary 58E05, 58F22
- DOI: https://doi.org/10.1090/S0002-9939-1989-0942635-9
- MathSciNet review: 942635