Existence of multiple periodic solutions for a semilinear evolution equation
HTML articles powered by AMS MathViewer
- by Norimichi Hirano
- Proc. Amer. Math. Soc. 106 (1989), 107-114
- DOI: https://doi.org/10.1090/S0002-9939-1989-0953007-5
- PDF | Request permission
Abstract:
In this paper, we consider the existence of multiple periodic solutions for the problem \[ \frac {{du}}{{dt}} + Lu = g(u) + h,t > 0,u(0) = u(T),\] where $L$ is a uniformly strongly elliptic operator with domain $D(L) = H_0^m(\Omega ),g:R \to R$ is a continuous mapping, $T > 0$ and $h:(0,T) \to H_0^m(\Omega )$ is a measurable function.References
- Shair Ahmad, Multiple nontrivial solutions of resonant and nonresonant asymptotically linear problems, Proc. Amer. Math. Soc. 96 (1986), no. 3, 405–409. MR 822429, DOI 10.1090/S0002-9939-1986-0822429-2
- Herbert Amann, Saddle points and multiple solutions of differential equations, Math. Z. 169 (1979), no. 2, 127–166. MR 550724, DOI 10.1007/BF01215273
- Herbert Amann, Periodic solutions of semilinear parabolic equations, Nonlinear analysis (collection of papers in honor of Erich H. Rothe), Academic Press, New York, 1978, pp. 1–29. MR 499089 V. Barbu, Nonlinear semigroups and evolution equations in Banach spaces, Noordhoff, Leyden, 1976.
- Felix E. Browder, Non-linear equations of evolution, Ann. of Math. (2) 80 (1964), 485–523. MR 173960, DOI 10.2307/1970660
- M. G. Crandall and A. Pazy, Nonlinear evolution equations in Banach spaces, Israel J. Math. 11 (1972), 57–94. MR 300166, DOI 10.1007/BF02761448
- Norimichi Hirano, Multiple nontrivial solutions of semilinear elliptic equations, Proc. Amer. Math. Soc. 103 (1988), no. 2, 468–472. MR 943068, DOI 10.1090/S0002-9939-1988-0943068-0
- Juan J. Nieto, Periodic solutions of nonlinear parabolic equations, J. Differential Equations 60 (1985), no. 1, 90–102. MR 808259, DOI 10.1016/0022-0396(85)90122-6
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 106 (1989), 107-114
- MSC: Primary 35B10; Secondary 35K55
- DOI: https://doi.org/10.1090/S0002-9939-1989-0953007-5
- MathSciNet review: 953007