Regularity of mappings of $G$-structures of Frobenius type
HTML articles powered by AMS MathViewer
- by Chong-Kyu Han
- Proc. Amer. Math. Soc. 106 (1989), 127-137
- DOI: https://doi.org/10.1090/S0002-9939-1989-0953743-0
- PDF | Request permission
Abstract:
A notion of Frobenius type for a $G$-structure is defined. It is shown that a mapping $f$ between ${C^\infty }({\text {resp}}{\text {.}}{C^\omega })$ manifolds with a $G$-structure of the Frobenius type is ${C^\infty }({\text {resp}}{\text {.}}{C^\omega })$ if $f \in {C^k}$, where the integer $k$ depends on the order of the Frobenius type. It is also shown that a $G$-structure of finite order is of the Frobenius type.References
- M. S. Baouendi, H. Jacobowitz, and F. Trèves, On the analyticity of CR mappings, Ann. of Math. (2) 122 (1985), no. 2, 365–400. MR 808223, DOI 10.2307/1971307
- S. S. Chern and J. K. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219–271. MR 425155, DOI 10.1007/BF02392146
- C. K. Han, Analyticity of CR equivalences between some real hypersurfaces in $\textbf {C}^{n}$ with degenerate Levi forms, Invent. Math. 73 (1983), no. 1, 51–69. MR 707348, DOI 10.1007/BF01393825
- Chong-Kyu Han, Regularity and uniqueness of certain systems of functions annihilated by a formally integrable system of vector fields, Rocky Mountain J. Math. 18 (1988), no. 4, 767–783. MR 1002174, DOI 10.1216/RMJ-1988-18-4-767
- Shoshichi Kobayashi, Transformation groups in differential geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 70, Springer-Verlag, New York-Heidelberg, 1972. MR 0355886, DOI 10.1007/978-3-642-61981-6
- Shlomo Sternberg, Lectures on differential geometry, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR 0193578
- S. M. Webster, Analytic discs and the regularity of C-R mappings of real submanifolds in $\textbf {C}^{n}$, Complex analysis of several variables (Madison, Wis., 1982) Proc. Sympos. Pure Math., vol. 41, Amer. Math. Soc., Providence, RI, 1984, pp. 199–208. MR 740883, DOI 10.1090/pspum/041/740883
- Robert B. Gardner, Differential geometric methods interfacing control theory, Differential geometric control theory (Houghton, Mich., 1982) Progr. Math., vol. 27, Birkhäuser, Boston, Mass., 1983, pp. 117–180. MR 708501
- Peter J. Olver, Applications of Lie groups to differential equations, Graduate Texts in Mathematics, vol. 107, Springer-Verlag, New York, 1986. MR 836734, DOI 10.1007/978-1-4684-0274-2
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 106 (1989), 127-137
- MSC: Primary 58A15; Secondary 53C10
- DOI: https://doi.org/10.1090/S0002-9939-1989-0953743-0
- MathSciNet review: 953743