A dichromatic polynomial for weighted graphs and link polynomials
HTML articles powered by AMS MathViewer
- by Lorenzo Traldi
- Proc. Amer. Math. Soc. 106 (1989), 279-286
- DOI: https://doi.org/10.1090/S0002-9939-1989-0955462-3
- PDF | Request permission
Abstract:
A dichromatic polynomial for weighted graphs is presented. The Kauffman bracket of a signed graph, an invariant inspired by the Jones polynomial of a link in three-space, is shown to be essentially an evaluation of this dichromatic polynomial, as are the homfly polynomials of certain particular types of links.References
- P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millett, and A. Ocneanu, A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 2, 239–246. MR 776477, DOI 10.1090/S0273-0979-1985-15361-3
- François Jaeger, Tutte polynomials and link polynomials, Proc. Amer. Math. Soc. 103 (1988), no. 2, 647–654. MR 943099, DOI 10.1090/S0002-9939-1988-0943099-0
- Louis H. Kauffman, State models and the Jones polynomial, Topology 26 (1987), no. 3, 395–407. MR 899057, DOI 10.1016/0040-9383(87)90009-7
- Louis H. Kauffman, New invariants in the theory of knots, Amer. Math. Monthly 95 (1988), no. 3, 195–242. MR 935433, DOI 10.2307/2323625
- Kunio Murasugi, Jones polynomials and classical conjectures in knot theory, Topology 26 (1987), no. 2, 187–194. MR 895570, DOI 10.1016/0040-9383(87)90058-9
- Kunio Murasugi, On invariants of graphs with applications to knot theory, Trans. Amer. Math. Soc. 314 (1989), no. 1, 1–49. MR 930077, DOI 10.1090/S0002-9947-1989-0930077-6 T. Przytycka and J. Przytycki, Signed dichromatic graphs of oriented link diagrams and matched diagrams, notes, Univ. of Toronto; 1987.
- Morwen B. Thistlethwaite, A spanning tree expansion of the Jones polynomial, Topology 26 (1987), no. 3, 297–309. MR 899051, DOI 10.1016/0040-9383(87)90003-6 W. T. Tutte, Graph theory, Cambridge Univ. Press, Cambridge, 1984. N. White (ed.), Theory of matroids, Cambridge Univ. Press, Cambridge, 1986.
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 106 (1989), 279-286
- MSC: Primary 57M25; Secondary 05C15, 57M15
- DOI: https://doi.org/10.1090/S0002-9939-1989-0955462-3
- MathSciNet review: 955462