Local rigidity of symmetric spaces of nonpositive curvature
HTML articles powered by AMS MathViewer
- by Viktor Schroeder and Martin Strake PDF
- Proc. Amer. Math. Soc. 106 (1989), 481-487 Request permission
Abstract:
We prove a rigidity theorem for Riemannian manifolds of nonpositive curvature, whose metric is locally symmetric in a neighborhood of the boundary.References
- Werner Ballmann, Mikhael Gromov, and Viktor Schroeder, Manifolds of nonpositive curvature, Progress in Mathematics, vol. 61, Birkhäuser Boston, Inc., Boston, MA, 1985. MR 823981, DOI 10.1007/978-1-4684-9159-3
- R. E. Greene and H. Wu, Gap theorems for noncompact Riemannian manifolds, Duke Math. J. 49 (1982), no. 3, 731–756. MR 672504 J. Hadamard, Sur certaines propriétés des trajectoires en dynamique, J. Math. 3 (1887), 331-387.
- Richard Sacksteder, On hypersurfaces with no negative sectional curvatures, Amer. J. Math. 82 (1960), 609–630. MR 116292, DOI 10.2307/2372973
- V. Schroeder and W. Ziller, Local rigidity of symmetric spaces, Trans. Amer. Math. Soc. 320 (1990), no. 1, 145–160. MR 958901, DOI 10.1090/S0002-9947-1990-0958901-X W. Thurston, The geometry and topology of $3$-manifolds, Lecture Notes, Princeton University, Princeton, NJ, 1978.
Additional Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 106 (1989), 481-487
- MSC: Primary 53C20; Secondary 53C35
- DOI: https://doi.org/10.1090/S0002-9939-1989-0929404-0
- MathSciNet review: 929404