Spectral properties for operators in a Lie algebra
HTML articles powered by AMS MathViewer
- by Humberto Prado
- Proc. Amer. Math. Soc. 106 (1989), 527-530
- DOI: https://doi.org/10.1090/S0002-9939-1989-0947316-3
- PDF | Request permission
Abstract:
Given an exponentiable Lie algebra $\mathcal {L}$ of operators on a Hilbert space $\mathcal {H}$, we study the spectrum of those self-adjoint, non-adnilpotent operators $- iA$, with $A$ in $\mathcal {L}$, for a certain class of solvable Lie algebras $\mathcal {L}$.References
- P. Bernat et al., Representations des groups de Lie résolubles, Dunond, Paris, 1972.
- Palle E. T. Jorgensen, Analytic continuation of local representations of Lie groups, Pacific J. Math. 125 (1986), no. 2, 397–408. MR 863534
- Palle E. T. Jorgensen, Analytic continuation of local representations of symmetric spaces, J. Funct. Anal. 70 (1987), no. 2, 304–322. MR 874059, DOI 10.1016/0022-1236(87)90115-7
- Palle E. T. Jorgensen and Robert T. Moore, Operator commutation relations, Mathematics and its Applications, D. Reidel Publishing Co., Dordrecht, 1984. Commutation relations for operators, semigroups, and resolvents with applications to mathematical physics and representations of Lie groups. MR 746138, DOI 10.1007/978-94-009-6328-3
- M. Lüscher and G. Mack, Global conformal invariance in quantum field theory, Comm. Math. Phys. 41 (1975), 203–234. MR 371282
- J. Fröhlich, K. Osterwalder, and E. Seiler, On virtual representations of symmetric spaces and their analytic continuation, Ann. of Math. (2) 118 (1983), no. 3, 461–489. MR 727701, DOI 10.2307/2006979
- Garth Warner, Harmonic analysis on semi-simple Lie groups. I, Die Grundlehren der mathematischen Wissenschaften, Band 188, Springer-Verlag, New York-Heidelberg, 1972. MR 0498999
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 106 (1989), 527-530
- MSC: Primary 22E25; Secondary 17B30, 17B65, 47A10, 47C05
- DOI: https://doi.org/10.1090/S0002-9939-1989-0947316-3
- MathSciNet review: 947316