A reduction theorem for the Zariski multiplicity conjecture
HTML articles powered by AMS MathViewer
- by David B. Massey
- Proc. Amer. Math. Soc. 106 (1989), 379-383
- DOI: https://doi.org/10.1090/S0002-9939-1989-0949879-0
- PDF | Request permission
Abstract:
We prove that the Zariski multiplicity conjecture for families of hypersurfaces of dimension ${}\ne 2$ with isolated singularities is equivalent to the conjecture for families of hypersurfaces with line singularities.References
- Gert-Martin Greuel, Constant Milnor number implies constant multiplicity for quasihomogeneous singularities, Manuscripta Math. 56 (1986), no. 2, 159–166. MR 850367, DOI 10.1007/BF01172153
- Helmut A. Hamm and Lê Dũng Tráng, Un théorème de Zariski du type de Lefschetz, Ann. Sci. École Norm. Sup. (4) 6 (1973), 317–355. MR 401755
- I. N. Iomdin, Complex surfaces with a one-dimensional set of singularities, Sibirsk. Mat. Ž. 15 (1974), 1061–1082, 1181 (Russian). MR 0447621
- Lê Dũng Tráng, Calcul du nombre de cycles évanouissants d’une hypersurface complexe, Ann. Inst. Fourier (Grenoble) 23 (1973), no. 4, 261–270 (French, with English summary). MR 330501 —, Ensembles analytiques complexes avec lieu singulier de dimension un (D’Apres I. N. Iomdine) Seminar on singularities (Paris, 1976/1977), Publ. Math. Univ. Paris VII 7 (1980), 87-95. —, Topologie des singuarlities des hypersurfaces complexes, Singularities a Cargese in Asterique 7 et 8 (1973), 171-182.
- Lê Dũng Tráng and C. P. Ramanujam, The invariance of Milnor’s number implies the invariance of the topological type, Amer. J. Math. 98 (1976), no. 1, 67–78. MR 399088, DOI 10.2307/2373614 D. B. Massey, Families of hypersurfaces with one-dimensional singular setes, Dissertation, Duke University, 1986.
- Donal B. O’Shea, Topologically trivial deformations of isolated quasihomogeneous hypersurface singularities are equimultiple, Proc. Amer. Math. Soc. 101 (1987), no. 2, 260–262. MR 902538, DOI 10.1090/S0002-9939-1987-0902538-0
- Oscar Zariski, Some open questions in the theory of singularities, Bull. Amer. Math. Soc. 77 (1971), 481–491. MR 277533, DOI 10.1090/S0002-9904-1971-12729-5
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 106 (1989), 379-383
- MSC: Primary 32B30; Secondary 14B05
- DOI: https://doi.org/10.1090/S0002-9939-1989-0949879-0
- MathSciNet review: 949879