Primitive elements in free groups
HTML articles powered by AMS MathViewer
- by Martin J. Evans
- Proc. Amer. Math. Soc. 106 (1989), 313-316
- DOI: https://doi.org/10.1090/S0002-9939-1989-0952315-1
- PDF | Request permission
Abstract:
Let ${F_n}$ denote the free group of rank $n$ generated by ${x_1},{x_2}, \ldots ,{x_n}$. We say that $y \in {F_n}$ is a primitive element of ${F_n}$ if it is contained in a set of free generators of ${F_n}$. In this note we construct, for each integer $n \geq 4$, an $(n - 1)$-generator group $H$ that has an $n$-generator, $2$-relator presentation $H = \langle {x_1}, \ldots ,{x_n}|{r_1},{r_2}\rangle$ such that the normal closure of $\{ {r_1},{r_2}\}$ in ${F_n}$ does not contain a primitive element of ${F_n}$.References
- M. J. Dunwoody, Relation modules, Bull. London Math. Soc. 4 (1972), 151–155. MR 327915, DOI 10.1112/blms/4.2.151
- Roger C. Lyndon and Paul E. Schupp, Combinatorial group theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 89, Springer-Verlag, Berlin-New York, 1977. MR 0577064 W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory, Interscience, New York, 1966.
- M. Susan Montgomery, Left and right inverses in group algebras, Bull. Amer. Math. Soc. 75 (1969), 539–540. MR 238967, DOI 10.1090/S0002-9904-1969-12234-2
- G. A. Noskov, Primitive elements in a free group, Mat. Zametki 30 (1981), no. 4, 497–500, 636 (Russian). MR 638422
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 106 (1989), 313-316
- MSC: Primary 20F05
- DOI: https://doi.org/10.1090/S0002-9939-1989-0952315-1
- MathSciNet review: 952315