SMALL SOLUTIONS OF CUBIC CONGRUENCES

TODD COCHRANE

(Communicated by William W. Adams)

Abstract. Let $C(x)$ be a cubic form in n variables over \mathbb{Z} and p be a prime. Then for $0 < \sigma < \frac{8}{3}$ the congruence $C(x) \equiv 0 \pmod{p}$ has a nonzero solution x with $\max \{ |x_i| \} \ll p^{1/3+\sigma}$, provided that $n > 8/\sigma$, (where the constant in the \ll depends on n and σ).

Let p be a prime and $F_1(x), \ldots, F_r(x)$ be forms of odd degrees $\leq d$ over \mathbb{Z} where $x = (x_1, x_2, \ldots, x_n)$. Let $|x| = \max_{1 \leq i \leq n} |x_i|$ and let F_p denote the finite field in p elements. In [4, Theorem 3] Schmidt proves that the system of congruences

$$F_1(x) = F_2(x) = \cdots = F_r(x) = 0 \pmod{p}$$

has a nonzero solution x with $|x| \ll p^{1/3+\sigma}$ provided that $n > c(r, d)/\sigma^2$, where $c(r, d)$ is an explicitly given constant depending only on r and d. In this paper we employ the ideas of Schmidt to obtain a refinement of this result in the case of a single cubic form.

Theorem. Let $C(x)$ be a cubic form over \mathbb{Z} and p be a prime. Then for $0 < \sigma < \frac{8}{3}$ the congruence $C(x) \equiv 0 \pmod{p}$ has a nonzero solution x with $|x| \ll p^{1/3+\sigma}$ provided that $n > 8/\sigma$. (The constant in \ll depends on n and σ.)

We note that the value of $c(1, 3)$ given in [4] is $\frac{8}{3}$, and so our result is an improvement on the size of n for $\sigma < \frac{8}{3}$. Also we wish to point out that the exponent $\frac{1}{3} + \sigma$ is certainly not the best possible value for a small solution of a cubic congruence. Indeed, in [2], Schmidt shows that for any $\epsilon > 0$ there exists an $n_0 = n_0(r, d, \epsilon)$ such that for $n > n_0$ (1) has a nonzero solution x with $|x| \ll p^\epsilon$.

In [1], Davenport and Lewis introduced the concept of the h-invariant of a cubic form. Specifically, for a cubic form $C(x)$ over F_p, the h-invariant $h = h_p(C)$ (relative to the field F_p) is the smallest positive integer h such that $C(x)$ can be written in the form

$$C(x) = L_1(x)Q_1(x) + L_2(x)Q_2(x) + \cdots + L_h(x)Q_h(x)$$

Received by the editors June 30, 1988, and, in revised form, September 25, 1988.

1980 Mathematics Subject Classification (1985 Revision). Primary 11D79; Secondary 11L40.

©1989 American Mathematical Society

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
where L_1, \ldots, L_h are linear forms and Q_1, \ldots, Q_h are quadratic forms over \mathbb{F}_p. Thus $n - h_p(C)$ is the largest dimension of any subspace of \mathbb{F}_p^n on which $C(x)$ is identically zero. Davenport and Lewis used the h-invariant to bound complete exponential sums. Schmidt [3] later extended the definition of an h-invariant to an arbitrary system of forms and was able to bound both complete and incomplete exponential sums in terms of h. We need the following Lemma, which is a special case of Theorem 3 of [3].

Lemma. The congruence $C(x) \equiv 0 \pmod{p}$ has a nonzero solution x with $|x| \ll p^{1/3+\sigma}$ provided that $h_p(C) > 8/3\sigma$.

Proof. Let $h = h_p(C)$. Suppose first that $h \leq n/3 + n\sigma$. Then $C(x)$ vanishes on an $n - h$ dimensional subspace of \mathbb{F}_p^n and this subspace corresponds with a lattice of points in \mathbb{Z}^n of volume p^h on which $C(x) \equiv 0 \pmod{p}$. Thus, by Minkowski’s fundamental theorem from the geometry of numbers, there exists a nonzero point x with $|x| \leq p^{h/n} \leq p^{1/3+\sigma}$ and $C(x) \equiv 0 \pmod{p}$.

If $h > n/3 + n\sigma$ then the theorem follows from the Lemma and our assumption that $n > 8/\sigma$.

References

Mathematics Department, Kansas State University, Manhattan, Kansas 66506