Small solutions of cubic congruences
HTML articles powered by AMS MathViewer
- by Todd Cochrane
- Proc. Amer. Math. Soc. 106 (1989), 333-334
- DOI: https://doi.org/10.1090/S0002-9939-1989-0964454-X
- PDF | Request permission
Abstract:
Let $C({\mathbf {x}})$ be a cubic form in $n$ variables over ${\mathbf {Z}}$ and $p$ be a prime. Then for $0 < \sigma < \frac {2}{3}$ the congruence $C({\mathbf {x}}) \equiv 0(\bmod p)$ has a nonzero solution $x$ with $\max \left | {{x_i}} \right | \ll {p^{1/3 + \sigma }}$, provided that $n > 8/\sigma$, (where the constant in the $\ll$ depends on $n$ and $\sigma$).References
- H. Davenport and D. J. Lewis, Exponential sums in many variables, Amer. J. Math. 84 (1962), 649–665. MR 144862, DOI 10.2307/2372871
- Wolfgang M. Schmidt, Diophantine inequalities for forms of odd degree, Adv. in Math. 38 (1980), no. 2, 128–151. MR 597195, DOI 10.1016/0001-8708(80)90002-X
- Wolfgang M. Schmidt, Bounds for exponential sums, Acta Arith. 44 (1984), no. 3, 281–297. MR 774104, DOI 10.4064/aa-44-3-281-297
- Wolfgang M. Schmidt, Small solutions of congruences with prime modulus, Diophantine analysis (Kensington, 1985) London Math. Soc. Lecture Note Ser., vol. 109, Cambridge Univ. Press, Cambridge, 1986, pp. 37–66. MR 874120
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 106 (1989), 333-334
- MSC: Primary 11D79; Secondary 11D25
- DOI: https://doi.org/10.1090/S0002-9939-1989-0964454-X
- MathSciNet review: 964454