Probability measure functors preserving the ANR-property of metric spaces
HTML articles powered by AMS MathViewer
- by Nguyen To Nhu and Ta Khac Cu
- Proc. Amer. Math. Soc. 106 (1989), 493-501
- DOI: https://doi.org/10.1090/S0002-9939-1989-0964459-9
- PDF | Request permission
Abstract:
Let ${P_k}\left ( X \right )$ denote the set of all probability measures on a metric space $X$ whose supports consist of no more than $k$ points, equipped with the Fedorchuk topology. We prove that if $X \in {\text {ANR}}$ then ${P_k}\left ( X \right ) \in {\text {ANR}}$ for every $k \in {\mathbf {N}}$. This implies that for each $k \in {\mathbf {N}}$ the functor ${P_k}$ preserves the topology of separable Hilbert space.References
- Czesław Bessaga and Aleksander Pełczyński, Selected topics in infinite-dimensional topology, Monografie Matematyczne, Tom 58. [Mathematical Monographs, Vol. 58], PWN—Polish Scientific Publishers, Warsaw, 1975. MR 0478168
- T. Dobrowolski and H. Toruńczyk, Separable complete ANRs admitting a group structure are Hilbert manifolds, Topology Appl. 12 (1981), no. 3, 229–235. MR 623731, DOI 10.1016/0166-8641(81)90001-8 V. V. Fedorchuk, Probability measures and absolute neighborhood retracts, Soviet Math. Dokl. 22 (1980), 849-853.
- A. H. Frink, Distance functions and the metrization problem, Bull. Amer. Math. Soc. 43 (1937), no. 2, 133–142. MR 1563501, DOI 10.1090/S0002-9904-1937-06509-8
- Harold W. Martin, A note on the Frink metrization theorem, Rocky Mountain J. Math. 6 (1976), no. 1, 155–157. MR 391035, DOI 10.1216/RMJ-1976-6-1-155
- Nguyen To Nhu, Investigating the ANR-property of metric spaces, Fund. Math. 124 (1984), no. 3, 243–254. MR 774515, DOI 10.4064/fm-124-3-243-254
- Nguyen To Nhu, Hyperspaces of compact sets in metric linear spaces, Topology Appl. 22 (1986), no. 2, 109–122. MR 836318, DOI 10.1016/0166-8641(86)90001-5
- Nguyen To Nhu, Orbit spaces of finite groups acting linearly on normed spaces, Bull. Polish Acad. Sci. Math. 32 (1984), no. 7-8, 417–424 (English, with Russian summary). MR 782757
- H. Toruńczyk, Characterizing Hilbert space topology, Fund. Math. 111 (1981), no. 3, 247–262. MR 611763, DOI 10.4064/fm-111-3-247-262
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 106 (1989), 493-501
- MSC: Primary 60B05; Secondary 46E27, 54C55
- DOI: https://doi.org/10.1090/S0002-9939-1989-0964459-9
- MathSciNet review: 964459