Dimensions and measures of quasi self-similar sets
HTML articles powered by AMS MathViewer
- by K. J. Falconer
- Proc. Amer. Math. Soc. 106 (1989), 543-554
- DOI: https://doi.org/10.1090/S0002-9939-1989-0969315-8
- PDF | Request permission
Abstract:
We show that sets with certain quasi self-similar properties have equal Hausdorff and box-packing dimensions and also have positive and finite Hausdorff measure at the dimensional value. A number of applications of these results to particular examples are given.References
- Tim Bedford, Dimension and dynamics for fractal recurrent sets, J. London Math. Soc. (2) 33 (1986), no. 1, 89–100. MR 829390, DOI 10.1112/jlms/s2-33.1.89
- Rufus Bowen, Hausdorff dimension of quasicircles, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 11–25. MR 556580
- K. J. Falconer, The geometry of fractal sets, Cambridge Tracts in Mathematics, vol. 85, Cambridge University Press, Cambridge, 1986. MR 867284
- John E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), no. 5, 713–747. MR 625600, DOI 10.1512/iumj.1981.30.30055
- Benoit B. Mandelbrot, The fractal geometry of nature, Schriftenreihe für den Referenten. [Series for the Referee], W. H. Freeman and Co., San Francisco, Calif., 1982. MR 665254
- John McLaughlin, A note on Hausdorff measures of quasi-self-similar sets, Proc. Amer. Math. Soc. 100 (1987), no. 1, 183–186. MR 883425, DOI 10.1090/S0002-9939-1987-0883425-3
- Claude Tricot Jr., Two definitions of fractional dimension, Math. Proc. Cambridge Philos. Soc. 91 (1982), no. 1, 57–74. MR 633256, DOI 10.1017/S0305004100059119
- David Rand, Universality and renormalisation in dynamical systems, New directions in dynamical systems, London Math. Soc. Lecture Note Ser., vol. 127, Cambridge Univ. Press, Cambridge, 1988, pp. 1–56. MR 953969
- David Ruelle, Bowen’s formula for the Hausdorff dimension of self-similar sets, Scaling and self-similarity in physics (Bures-sur-Yvette, 1981/1982) Progr. Phys., vol. 7, Birkhäuser Boston, Boston, MA, 1983, pp. 351–358. MR 733478
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 106 (1989), 543-554
- MSC: Primary 58F12; Secondary 28A75
- DOI: https://doi.org/10.1090/S0002-9939-1989-0969315-8
- MathSciNet review: 969315