Quotients of bounded operators
HTML articles powered by AMS MathViewer
- by Saichi Izumino
- Proc. Amer. Math. Soc. 106 (1989), 427-435
- DOI: https://doi.org/10.1090/S0002-9939-1989-0969522-4
- PDF | Request permission
Abstract:
We define a quotient $[B/A]$ of bounded operators $A$ and $B$ on a Hilbert space $H$ with ker $A \subset$ ker $B$ as the mapping $Ax \to Bx,x \in H$, and show explicit formulae for computing quotients which correspond to sums, products, adjoints and closures of given quotients.References
- Adi Ben-Israel and Thomas N. E. Greville, Generalized inverses: theory and applications, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. MR 0396607
- Jacques Dixmier, Étude sur les variétés et les opérateurs de Julia, avec quelques applications, Bull. Soc. Math. France 77 (1949), 11–101 (French). MR 32937
- R. G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413–415. MR 203464, DOI 10.1090/S0002-9939-1966-0203464-1
- P. A. Fillmore and J. P. Williams, On operator ranges, Advances in Math. 7 (1971), 254–281. MR 293441, DOI 10.1016/S0001-8708(71)80006-3
- Palle E. T. Jørgensen, Unbounded operators: perturbations and commutativity problems, J. Functional Analysis 39 (1980), no. 3, 281–307. MR 600620, DOI 10.1016/0022-1236(80)90030-0
- William E. Kaufman, Representing a closed operator as a quotient of continuous operators, Proc. Amer. Math. Soc. 72 (1978), no. 3, 531–534. MR 509249, DOI 10.1090/S0002-9939-1978-0509249-9
- William E. Kaufman, Semiclosed operators in Hilbert space, Proc. Amer. Math. Soc. 76 (1979), no. 1, 67–73. MR 534392, DOI 10.1090/S0002-9939-1979-0534392-9
- William E. Kaufman, Closed operators and pure contractions in Hilbert space, Proc. Amer. Math. Soc. 87 (1983), no. 1, 83–87. MR 677237, DOI 10.1090/S0002-9939-1983-0677237-X
- Yoshiaki Okazaki, Boundedness of closed linear operator $T$ satisfying $R(T)\subset D(T)$, Proc. Japan Acad. Ser. A Math. Sci. 62 (1986), no. 8, 294–296. MR 868824
- Sch\B{o}ichi Ōta, Closed linear operators with domain containing their range, Proc. Edinburgh Math. Soc. (2) 27 (1984), no. 2, 229–233. MR 760619, DOI 10.1017/S0013091500022331
- Frigyes Riesz and Béla Sz.-Nagy, Functional analysis, Frederick Ungar Publishing Co., New York, 1955. Translated by Leo F. Boron. MR 0071727
- M. H. Stone, On unbounded operators in Hilbert space, J. Indian Math. Soc. (N.S.) 15 (1951), 155–192 (1952). MR 52042
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 106 (1989), 427-435
- MSC: Primary 47A05
- DOI: https://doi.org/10.1090/S0002-9939-1989-0969522-4
- MathSciNet review: 969522