Mosco convergence and the Kadec property
HTML articles powered by AMS MathViewer
- by Jonathan M. Borwein and Simon Fitzpatrick PDF
- Proc. Amer. Math. Soc. 106 (1989), 843-851 Request permission
Abstract:
We study the relationship between Wijsman convergence and Mosco convergence for sequences of convex sets. Our central result is that Mosco convergence and Wijsman convergence coincide for sequences of convex sets if and only if the underlying space is reflexive with the dual norm having the Kadec property.References
- H. Attouch, Variational convergence for functions and operators, Applicable Mathematics Series, Pitman (Advanced Publishing Program), Boston, MA, 1984. MR 773850
- Jean-Pierre Aubin, Applied abstract analysis, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1977. Exercises by Bernard Cornet and Hervé Moulin; Translated from the French by Carole Labrousse. MR 0470034 G. Beer, Convergence of continuous linear functionals and their level sets, Arch. Math. (in press). J. M. Borwein and S. P. Fitzpatrick, Existence of nearest points in Banach spaces, Canadian Journal of Mathematics (in press).
- Mahlon M. Day, Normed linear spaces, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 21, Springer-Verlag, New York-Heidelberg, 1973. MR 0344849
- J. R. Giles, D. A. Gregory, and Brailey Sims, Geometrical implications of upper semi-continuity of the duality mapping on a Banach space, Pacific J. Math. 79 (1978), no. 1, 99–109. MR 526669
- Richard B. Holmes, A course on optimization and best approximation, Lecture Notes in Mathematics, Vol. 257, Springer-Verlag, Berlin-New York, 1972. MR 0420367
- S. V. Konjagin, Approximation properties of closed sets in Banach spaces and the characterization of strongly convex spaces, Dokl. Akad. Nauk SSSR 251 (1980), no. 2, 276–280 (Russian). MR 565493
- Ka Sing Lau, Almost Chebyshev subsets in reflexive Banach spaces, Indiana Univ. Math. J. 27 (1978), no. 5, 791–795. MR 510772, DOI 10.1512/iumj.1978.27.27051
- Umberto Mosco, Convergence of convex sets and of solutions of variational inequalities, Advances in Math. 3 (1969), 510–585. MR 298508, DOI 10.1016/0001-8708(69)90009-7
- Umberto Mosco, On the continuity of the Young-Fenchel transform, J. Math. Anal. Appl. 35 (1971), 518–535. MR 283586, DOI 10.1016/0022-247X(71)90200-9
- Gabriella Salinetti and Roger J.-B. Wets, On the convergence of sequences of convex sets in finite dimensions, SIAM Rev. 21 (1979), no. 1, 18–33. MR 516381, DOI 10.1137/1021002 Y. Sonntag, Convergence au sens de Mosco; théorie et applications à l’approximation des solutions d’inéquations, Thèse d’État. Université de Provence, Marseille, 1982.
- Makoto Tsukada, Convergence of best approximations in a smooth Banach space, J. Approx. Theory 40 (1984), no. 4, 301–309. MR 740641, DOI 10.1016/0021-9045(84)90003-0
- R. A. Wijsman, Convergence of sequences of convex sets, cones and functions. II, Trans. Amer. Math. Soc. 123 (1966), 32–45. MR 196599, DOI 10.1090/S0002-9947-1966-0196599-8
Additional Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 106 (1989), 843-851
- MSC: Primary 46B20; Secondary 52A05, 54C60
- DOI: https://doi.org/10.1090/S0002-9939-1989-0969313-4
- MathSciNet review: 969313