On the imbedding of a direct product into a zero-dimensional commutative ring
HTML articles powered by AMS MathViewer
- by Robert Gilmer and William Heinzer
- Proc. Amer. Math. Soc. 106 (1989), 631-636
- DOI: https://doi.org/10.1090/S0002-9939-1989-0969521-2
- PDF | Request permission
Abstract:
This paper addresses questions related to results of M. Arapovic concerning imbeddability of a commutative unitary ring $R$ in a zero-dimensional ring. The case where $R$ is a product of zero-dimensional rings is of special interest. We show (1) if the zero ideal of $R$ admits a unique representation as an irredundant intersection of (strongly primary) ideals, then $R$ need not be imbeddable in a zero-dimensional ring, and (2) for a family $\left \{ {{R_\alpha }} \right \}$ of zero-dimensional rings, $R = \prod {R_\alpha }$ is imbeddable in a zero-dimensional ring if and only if $R$ itself is zero-dimensional.References
- M. Arapović, Characterizations of the $0$-dimensional rings, Glasnik Mat. Ser. III 18(38) (1983), no. 1, 39–46 (English, with Serbo-Croatian summary). MR 710383
- M. Arapović, Characterizations of the $0$-dimensional rings, Glasnik Mat. Ser. III 18(38) (1983), no. 1, 39–46 (English, with Serbo-Croatian summary). MR 710383
- M. Arapović, Characterizations of the $0$-dimensional rings, Glasnik Mat. Ser. III 18(38) (1983), no. 1, 39–46 (English, with Serbo-Croatian summary). MR 710383 R. Gilmer and W. Heinzer, Products of commutative rings and zero-dimensionality, in preparation.
- James A. Huckaba, On valuation rings that contain zero divisors, Proc. Amer. Math. Soc. 40 (1973), 9–15. MR 318134, DOI 10.1090/S0002-9939-1973-0318134-2
- James A. Huckaba, Commutative rings with zero divisors, Monographs and Textbooks in Pure and Applied Mathematics, vol. 117, Marcel Dekker, Inc., New York, 1988. MR 938741
- Paolo Maroscia, Sur les anneaux de dimension zéro, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 56 (1974), no. 4, 451–459 (French, with Italian summary). MR 0389877
- Nicolae Popescu and Constantin Vraciu, Sur la structure des anneaux absoluments plats commutatifs, J. Algebra 40 (1976), no. 2, 364–383. MR 439834, DOI 10.1016/0021-8693(76)90201-5
- Douglas H. Underwood, On some uniqueness questions in primary representations of ideals, J. Math. Kyoto Univ. 9 (1969), 69–94. MR 246865, DOI 10.1215/kjm/1250524012
- Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, Graduate Texts in Mathematics, Vol. 29, Springer-Verlag, New York-Heidelberg, 1975. Reprint of the 1960 edition. MR 0389876
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 106 (1989), 631-636
- MSC: Primary 13B99
- DOI: https://doi.org/10.1090/S0002-9939-1989-0969521-2
- MathSciNet review: 969521