On the number of good rational approximations to algebraic numbers
HTML articles powered by AMS MathViewer
- by Julia Mueller and W. M. Schmidt
- Proc. Amer. Math. Soc. 106 (1989), 859-866
- DOI: https://doi.org/10.1090/S0002-9939-1989-0961415-1
- PDF | Request permission
Abstract:
We study rational approximations $x/y$ to algebraic and, more generally, to real numbers $\xi$. Given $\delta > 0$, and writing $L = \log (1 + \delta )$, the number of approximations with $|\xi - (x/y)| < {y^{ - 2 - \delta }}$ is $\leq {L^{ - 1}}\log \log H + {c_1}(\delta ,r)$ if $\xi$ is algebraic of degree $\leq r$ and of height $H$ , and is $\leq {L^{ - 1}}\log \log B + {c_2}(\delta )$ if $\xi$ is real and we restrict to approximations with $y \leq B$. It turns out that the dependency on $H$ resp. $B$ in these estimates is the best possible, i.e., that the summands ${L^{ - 1}}\log \log H$ resp. ${L^{ - 1}}\log \log B$ are optimal.References
- E. Bombieri and A. J. van der Poorten, Some quantitative results related to Roth’s theorem, J. Austral. Math. Soc. Ser. A 45 (1988), no. 2, 233–248. MR 951583
- H. Davenport and K. F. Roth, Rational approximations to algebraic numbers, Mathematika 2 (1955), 160–167. MR 77577, DOI 10.1112/S0025579300000814
- G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Oxford, at the Clarendon Press, 1954. 3rd ed. MR 0067125
- H. Luckhardt, Herbrand-Analysen zweier Beweise des Satzes von Roth: Polynomiale Anzahlschranken, J. Symbolic Logic 54 (1989), no. 1, 234–263 (German, with English summary). MR 987335, DOI 10.2307/2275028
- K. Mahler, An application of Jensen’s formula to polynomials, Mathematika 7 (1960), 98–100. MR 124467, DOI 10.1112/S0025579300001637
- Wolfgang M. Schmidt, On the number of good simultaneous approximations to algebraic numbers, International Symposium in Memory of Hua Loo Keng, Vol. I (Beijing, 1988) Springer, Berlin, 1991, pp. 249–264. MR 1135815
- Eduard Wirsing, Approximation mit algebraischen Zahlen beschränkten Grades, J. Reine Angew. Math. 206 (1961), 67–77 (German). MR 142510, DOI 10.1515/crll.1961.206.67
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 106 (1989), 859-866
- MSC: Primary 11J68; Secondary 11J17
- DOI: https://doi.org/10.1090/S0002-9939-1989-0961415-1
- MathSciNet review: 961415