Terms in the Selberg trace formula for $\textrm {SL}(3,\textbf {Z})\backslash \textrm {SL}(3,\textbf {R})/\textrm {SO}(3,\textbf {R})$ associated to Eisenstein series coming from a maximal parabolic subgroup
HTML articles powered by AMS MathViewer
- by D. I. Wallace
- Proc. Amer. Math. Soc. 106 (1989), 875-883
- DOI: https://doi.org/10.1090/S0002-9939-1989-0963577-9
- PDF | Request permission
Abstract:
There are two types of Eisenstein series associated to $\mathrm {SL}(3, \mathbf {Z})$. This paper deals with those which are built out of cuspidal Maass waveforms for $\mathrm {SL}(2, \mathbf {Z})$. We compute the inner product of two of them over a truncated fundamental region and then compute the rate of divergence as the truncation parameter tends to infinity. The solution of this problem is of use in computing the details of the trace formula for $\mathrm {SL}(3, \mathbf {Z})$.References
- James Arthur, The trace formula in invariant form, Ann. of Math. (2) 114 (1981), no.ย 1, 1โ74. MR 625344, DOI 10.2307/1971376 Dennis Hejhal, The Selberg trace formula for $\mathrm {PSL}(2, \mathbf {R})$, Vol. I, Lecture Notes in Math. 548, Springer-Verlag, 1976, New York; Vol. II, Lecture Notes in Math. 1001, Springer-Verlag, 1983, New York.
- Serge Lang, $\textrm {SL}_{2}(\textbf {R})$, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1975. MR 0430163
- R. P. Langlands, Eisenstein series, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) Amer. Math. Soc., Providence, R.I., 1966, pp.ย 235โ252. MR 0249539 Peter Sarnak, Prime geodesic theorems, Ph.D. thesis, Stanford University, 1980. A. Selberg, Lectures on the trace formula, University of Gรถttingen, 1954.
- Audrey Terras, Harmonic analysis on symmetric spaces and applications. I, Springer-Verlag, New York, 1985. MR 791406, DOI 10.1007/978-1-4612-5128-6 A. B. Venkov, The Selberg trace formula for $\mathrm {SL}(3, \mathbf {Z})$, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Akad. Nauk. SSSR 37 (1973).
- D. I. Wallace, Maximal parabolic terms in the Selberg trace formula for $\textrm {SL}(3,\textbf {Z})\backslash \textrm {SL}(3,\textbf {R})/\textrm {SO}(3,\textbf {R})$, J. Number Theory 29 (1988), no.ย 2, 101โ117. MR 945590, DOI 10.1016/0022-314X(88)90095-9
- D. I. Wallace, Minimal parabolic terms in the Selberg trace formula for $\textrm {SL}(3,\textbf {Z})\backslash \textrm {SL}(3,\textbf {R})/\textrm {SO}(3,\textbf {R})$, J. Number Theory 32 (1989), no.ย 1, 1โ13. MR 1002111, DOI 10.1016/0022-314X(89)90094-2
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 106 (1989), 875-883
- MSC: Primary 11F72; Secondary 11F55, 22E40
- DOI: https://doi.org/10.1090/S0002-9939-1989-0963577-9
- MathSciNet review: 963577