On strong uniqueness in one-sided $L^ 1$-approximation of differentiable functions
HTML articles powered by AMS MathViewer
- by András Kroó, Manfred Sommer and Hans Strauss
- Proc. Amer. Math. Soc. 106 (1989), 1011-1016
- DOI: https://doi.org/10.1090/S0002-9939-1989-0964457-5
- PDF | Request permission
Abstract:
We consider the problem of one-sided ${L^1}$-approximation in ${C^1}\left [ {0,1} \right ]$. A sharp estimate for the rate of strong uniqueness for arbitrary unicity subspaces of ${C^1}\left [ {0,1} \right ]$ is given.References
- Rainer Hettich and Peter Zencke, Numerische Methoden der Approximation und semi-infiniten Optimierung, Teubner Studienbücher Mathematik. [Teubner Mathematical Textbooks], B. G. Teubner, Stuttgart, 1982 (German). MR 653476, DOI 10.1007/978-3-322-93108-5
- András Kroó, On strong unicity of $L_{1}$-approximation, Proc. Amer. Math. Soc. 83 (1981), no. 4, 725–729. MR 630044, DOI 10.1090/S0002-9939-1981-0630044-4
- Günther Nürnberger, Unicity in one-sided $L_1$-approximation and quadrature formulae, J. Approx. Theory 45 (1985), no. 3, 271–279. MR 812756, DOI 10.1016/0021-9045(85)90050-4
- A. Pinkus and H. Strauss, One-sided $L^1$-approximation to differentiable functions, Approx. Theory Appl. 3 (1987), no. 1, 81–96. MR 967135
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 106 (1989), 1011-1016
- MSC: Primary 41A50; Secondary 41A52
- DOI: https://doi.org/10.1090/S0002-9939-1989-0964457-5
- MathSciNet review: 964457