Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the blow up of $u_ t$ at quenching


Authors: Keng Deng and Howard A. Levine
Journal: Proc. Amer. Math. Soc. 106 (1989), 1049-1056
MSC: Primary 35B40; Secondary 35K55
DOI: https://doi.org/10.1090/S0002-9939-1989-0969520-0
MathSciNet review: 969520
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $\Omega$ be a bounded convex domain in ${{\mathbf {R}}^n}$ with smooth boundary. We consider the problems $\left ( C \right ):{u_t} = \Delta u + \varphi \left ( u \right )$ in $\Omega \times \left ( {0,T} \right )$, while $u = 0$ on $\partial \Omega \times \left ( {0,T} \right )$ and $u\left ( {x,0} \right ) = {u_0}\left ( x \right )$. Here $\varphi \left ( u \right ):\left ( { - \infty ,A} \right ) \to \left ( {0,\infty } \right )\left ( {A > 0} \right )$ satisfies $\varphi ’\left ( u \right ) \geq 0,\varphi ''\left ( u \right ) \geq 0$, and ${\lim _{u \to {A^ - }}}\varphi \left ( u \right ) = + \infty$, while ${u_0}$ satisfies $\Delta {u_0}\left ( x \right ) + \varphi \left ( {{u_0}\left ( x \right )} \right ) \geq 0$. We show that if $u$ quenches (reaches $A$ in finite time), then the quenching points are in a compact subset of $\Omega$ and ${u_t}$ blows up. We also extend the result to the third boundary value problem.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 35B40, 35K55

Retrieve articles in all journals with MSC: 35B40, 35K55


Additional Information

Article copyright: © Copyright 1989 American Mathematical Society