On the blow up of $u_ t$ at quenching
HTML articles powered by AMS MathViewer
- by Keng Deng and Howard A. Levine
- Proc. Amer. Math. Soc. 106 (1989), 1049-1056
- DOI: https://doi.org/10.1090/S0002-9939-1989-0969520-0
- PDF | Request permission
Abstract:
Let $\Omega$ be a bounded convex domain in ${{\mathbf {R}}^n}$ with smooth boundary. We consider the problems $\left ( C \right ):{u_t} = \Delta u + \varphi \left ( u \right )$ in $\Omega \times \left ( {0,T} \right )$, while $u = 0$ on $\partial \Omega \times \left ( {0,T} \right )$ and $u\left ( {x,0} \right ) = {u_0}\left ( x \right )$. Here $\varphi \left ( u \right ):\left ( { - \infty ,A} \right ) \to \left ( {0,\infty } \right )\left ( {A > 0} \right )$ satisfies $\varphi ’\left ( u \right ) \geq 0,\varphi ''\left ( u \right ) \geq 0$, and ${\lim _{u \to {A^ - }}}\varphi \left ( u \right ) = + \infty$, while ${u_0}$ satisfies $\Delta {u_0}\left ( x \right ) + \varphi \left ( {{u_0}\left ( x \right )} \right ) \geq 0$. We show that if $u$ quenches (reaches $A$ in finite time), then the quenching points are in a compact subset of $\Omega$ and ${u_t}$ blows up. We also extend the result to the third boundary value problem.References
- Hideo Kawarada, On solutions of initial-boundary problem for $u_{t}=u_{xx}+1/(1-u)$, Publ. Res. Inst. Math. Sci. 10 (1974/75), no. 3, 729–736. MR 0385328, DOI 10.2977/prims/1195191889
- Andrew Acker and Wolfgang Walter, The quenching problem for nonlinear parabolic differential equations, Ordinary and partial differential equations (Proc. Fourth Conf., Univ. Dundee, Dundee, 1976) Lecture Notes in Math., Vol. 564, Springer, Berlin, 1976, pp. 1–12. MR 0604032
- Andrew Acker and Wolfgang Walter, On the global existence of solutions of parabolic differential equations with a singular nonlinear term, Nonlinear Anal. 2 (1978), no. 4, 499–504. MR 512487, DOI 10.1016/0362-546X(78)90057-3
- Howard A. Levine and John T. Montgomery, The quenching of solutions of some nonlinear parabolic equations, SIAM J. Math. Anal. 11 (1980), no. 5, 842–847. MR 586912, DOI 10.1137/0511075
- Howard A. Levine, The quenching of solutions of linear parabolic and hyperbolic equations with nonlinear boundary conditions, SIAM J. Math. Anal. 14 (1983), no. 6, 1139–1153. MR 718814, DOI 10.1137/0514088
- Howard A. Levine, The phenomenon of quenching: a survey, Trends in the theory and practice of nonlinear analysis (Arlington, Tex., 1984) North-Holland Math. Stud., vol. 110, North-Holland, Amsterdam, 1985, pp. 275–286. MR 817500, DOI 10.1016/S0304-0208(08)72720-8 —, Quenching, nonquenching, and beyond quenching for solutions of some parabolic equations, Ann. Mat. Pura Appl. (in press).
- Andrew F. Acker and Bernhard Kawohl, Remarks on quenching, Nonlinear Anal. 13 (1989), no. 1, 53–61. MR 973368, DOI 10.1016/0362-546X(89)90034-5
- Avner Friedman and Bryce McLeod, Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J. 34 (1985), no. 2, 425–447. MR 783924, DOI 10.1512/iumj.1985.34.34025
- B. Gidas, Wei Ming Ni, and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), no. 3, 209–243. MR 544879, DOI 10.1007/BF01221125 M. Chipot and F. B. Weissler, Some blow up results for a nonlinear parabolic equation with a gradient term, IMA Preprint Series no. 298.
- C. Y. Chan and Man Kam Kwong, Quenching phenomena for singular nonlinear parabolic equations, Nonlinear Anal. 12 (1988), no. 12, 1377–1383. MR 972406, DOI 10.1016/0362-546X(88)90085-5 J. Guo, On the quenching behavior of the solution of a semilinear parabolic equation, J. Math. Anal. Appl. (in print). —, On the semilinear elliptic equation, $\Delta w - \frac {1}{2}y \cdot \nabla w + \lambda w - {w^{ - \beta }} = 0$ in ${R^N}$, (in print).
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 106 (1989), 1049-1056
- MSC: Primary 35B40; Secondary 35K55
- DOI: https://doi.org/10.1090/S0002-9939-1989-0969520-0
- MathSciNet review: 969520