Almost commuting unitary matrices
HTML articles powered by AMS MathViewer
- by Ruy Exel and Terry Loring
- Proc. Amer. Math. Soc. 106 (1989), 913-915
- DOI: https://doi.org/10.1090/S0002-9939-1989-0975641-9
- PDF | Request permission
Abstract:
A pair of square matrices is said to be almost commuting if their commutator is small in norm. We give an elementary proof of a theorem of Voiculescu showing that not all almost commuting pairs can be perturbed to a commuting pair.References
- Man Duen Choi, Almost commuting matrices need not be nearly commuting, Proc. Amer. Math. Soc. 102 (1988), no. 3, 529–533. MR 928973, DOI 10.1090/S0002-9939-1988-0928973-3
- Kenneth R. Davidson, Almost commuting Hermitian matrices, Math. Scand. 56 (1985), no. 2, 222–240. MR 813638, DOI 10.7146/math.scand.a-12098
- P. R. Halmos, Some unsolved problems of unknown depth about operators on Hilbert space, Proc. Roy. Soc. Edinburgh Sect. A 76 (1976/77), no. 1, 67–76. MR 451002, DOI 10.1017/S0308210500019491
- Terry A. Loring, $K$-theory and asymptotically commuting matrices, Canad. J. Math. 40 (1988), no. 1, 197–216. MR 928219, DOI 10.4153/CJM-1988-008-9
- Dan Voiculescu, Remarks on the singular extension in the $C^{\ast }$-algebra of the Heisenberg group, J. Operator Theory 5 (1981), no. 2, 147–170. MR 617972
- Dan Voiculescu, Asymptotically commuting finite rank unitary operators without commuting approximants, Acta Sci. Math. (Szeged) 45 (1983), no. 1-4, 429–431. MR 708811
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 106 (1989), 913-915
- MSC: Primary 15A15; Secondary 15A27, 47A55, 47B47, 55M25
- DOI: https://doi.org/10.1090/S0002-9939-1989-0975641-9
- MathSciNet review: 975641