The ghost of an index theorem
HTML articles powered by AMS MathViewer
- by Robin Harte
- Proc. Amer. Math. Soc. 106 (1989), 1031-1033
- DOI: https://doi.org/10.1090/S0002-9939-1989-0975646-8
- PDF | Request permission
Correction: Proc. Amer. Math. Soc. 128 (2000), 3145-3148.
Abstract:
The "index theorem" whose spirit we invoke says that the index of a product of Fredholm operators is the sum of their indexes; our extension is to operators with "generalized inverses".References
- S. R. Caradus, Generalized inverses and operator theory, Queen’s Papers in Pure and Applied Mathematics, vol. 50, Queen’s University, Kingston, Ont., 1978. MR 523736
- S. R. Caradus, W. E. Pfaffenberger, and Bertram Yood, Calkin algebras and algebras of operators on Banach spaces, Lecture Notes in Pure and Applied Mathematics, Vol. 9, Marcel Dekker, Inc., New York, 1974. MR 0415345
- Robin Harte, Fredholm, Weyl and Browder theory, Proc. Roy. Irish Acad. Sect. A 85 (1985), no. 2, 151–176. MR 845539
- Robin Harte, Invertibility and singularity for bounded linear operators, Monographs and Textbooks in Pure and Applied Mathematics, vol. 109, Marcel Dekker, Inc., New York, 1988. MR 920812
- Harro G. Heuser, Functional analysis, A Wiley-Interscience Publication, John Wiley & Sons, Ltd., Chichester, 1982. Translated from the German by John Horváth. MR 640429
- Mihai Putinar, Some invariants for semi-Fredholm systems of essentially commuting operators, J. Operator Theory 8 (1982), no. 1, 65–90. MR 670178
- Angus Ellis Taylor and David C. Lay, Introduction to functional analysis, 2nd ed., John Wiley & Sons, New York-Chichester-Brisbane, 1980. MR 564653
- Kung Wei Yang, Index of Fredholm operators, Proc. Amer. Math. Soc. 41 (1973), 329–330. MR 318946, DOI 10.1090/S0002-9939-1973-0318946-5
- Donald Sarason, The multiplication theorem for Fredholm operators, Amer. Math. Monthly 94 (1987), no. 1, 68–70. MR 873608, DOI 10.2307/2323506
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 106 (1989), 1031-1033
- MSC: Primary 47A53; Secondary 47A05
- DOI: https://doi.org/10.1090/S0002-9939-1989-0975646-8
- MathSciNet review: 975646