Each hyperinvariant subspace for a multiplication operator is spectral
HTML articles powered by AMS MathViewer
- by Sen Zhong Huang
- Proc. Amer. Math. Soc. 106 (1989), 1057-1061
- DOI: https://doi.org/10.1090/S0002-9939-1989-0975657-2
- PDF | Request permission
Abstract:
We consider multiplication operators on general separable complex ${L^p}$-spaces, for $1 \leq p < + \infty$, and obtain the result announced in the title. Moreover, a result of Douglas and Pearcy on normal operators is given an alternate proof.References
- J. Diestel and J. J. Uhl Jr., Vector measures, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis. MR 0453964, DOI 10.1090/surv/015
- R. G. Douglas and Carl Pearcy, On a topology for invariant subspaces, J. Functional Analysis 2 (1968), 323–341. MR 0233224, DOI 10.1016/0022-1236(68)90010-4
- Nelson Dunford, Spectral operators, Pacific J. Math. 4 (1954), 321–354. MR 63563, DOI 10.2140/pjm.1954.4.321
- H. Elton Lacey, The isometric theory of classical Banach spaces, Die Grundlehren der mathematischen Wissenschaften, Band 208, Springer-Verlag, New York-Heidelberg, 1974. MR 0493279, DOI 10.1007/978-3-642-65762-7
- Heydar Radjavi and Peter Rosenthal, Hyperinvariant subspaces for spectral and $n$-normal operators, Acta Sci. Math. (Szeged) 32 (1971), 121–126. MR 308817
- Heydar Radjavi and Peter Rosenthal, Invariant subspaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 77, Springer-Verlag, New York-Heidelberg, 1973. MR 0367682, DOI 10.1007/978-3-642-65574-6
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 106 (1989), 1057-1061
- MSC: Primary 47A15; Secondary 47B15, 47B38
- DOI: https://doi.org/10.1090/S0002-9939-1989-0975657-2
- MathSciNet review: 975657