NOWHERE DENSE P-SUBSETS OF ω^*

WINFRIED JUST

(Communicated by Dennis Burke)

Abstract. It is relatively consistent with ZFC that no nowhere dense P-subset of ω^* is homeomorphic to the space ω^* itself.

By $P(\omega)$ we denote the Boolean algebra of all subsets of ω. Whenever we use the word 'ideal' we mean a proper ideal $I \subset P(\omega)$ such that I contains Fin—the ideal of finite subsets of ω. An ideal I is called a p-ideal, if for every countable subset $\{A_n: n \in \omega\} \subset I$ there exists a $B \in I$ such that $A_n - B \in Fin$ for every n. An ideal I is called tall, if for every infinite $B \subset \omega$ there exists an infinite $A \in I$ such that $A \subset B$. For instance, Fin is a p-ideal, but not tall.

The Stone space of $P(\omega)/Fin$ is ω^*, i.e. $\beta\omega - \omega$. A subset Y of a topological space X is called a P-set, if for every countable family U of open supersets of Y there exists an open V so that $Y \subset V \subset \bigcap U$. Closed P-subsets of ω^* are the Stone spaces of algebras $P(\omega)/I$, where I is a p-ideal; and closed nowhere dense subsets of ω^* are Stone spaces of algebras $P(\omega)/I$, where I is tall.

E. K. van Douwen and J. van Mill asked whether one can prove in ZFC the existence of nowhere dense P-subsets of ω^* which are homeomorphic to ω^*. (See [vM, p. 537]. Also, consult this article for information about the situation under CH). This question translates as follows.

Question 1. Can one prove in ZFC that there is a tall p-ideal I such that the algebras $P(\omega)/I$ and $P(\omega)/Fin$ are isomorphic?

We say that an ideal I is trivial below a subset $B \subset \omega$, iff there exists an $A \subset B$ so that $I \cap P(B)$ is generated by $(Fin \cap P(B)) \cup \{A\}$. We denote: $Tr(I) = \{B \subset \omega: I$ is trivial below $B\}$.
Claim 2. (a) $I \subseteq \text{Tr}(I)$ for every ideal I.
(b) An ideal I is tall iff $\text{Tr}(I) = I$. □

For any subfamily $A \subseteq P(\omega)/\text{Fin}$ denote $[A] = \{A \in \omega: A/\text{Fin} \in A\}$. Let AKF abbreviate the following statement: “For every homomorphism $H: P(\omega)/\text{Fin} \to P(\omega)/\text{Fin}$ and every uncountable family B of pairwise almost disjoint subsets of ω there exists a $B \in B$ so that $B \in \text{Tr}([\text{Ker}(H)])$.”

In [J], I proved the relative consistency of AKF with ZFC and studied some of its consequences. Here we show that AKF yields an answer to Question 1.

Theorem 3. Suppose AKF holds, and I is a tall p-ideal so that the algebra $P(\omega)/I$ can be isomorphically embedded into $P(\omega)/\text{Fin}$. Then the ideal I is countably saturated, i.e. the quotient algebra $P(\omega)/I$ satisfies the c.c.c.

Corollary 4. AKF implies that no nowhere dense P-subset of ω^* is homeomorphic to ω^*. □

Proof of Theorem 3. Suppose that AKF holds, and that I is a tall p-ideal so that the algebra $P(\omega)/I$ does not satisfy the c.c.c. Let $\langle A_\xi : \xi < \omega_1 \rangle$ be a sequence of subsets of ω so that $A_\xi \notin I$ and $A_\xi \cap A_\eta \in I$ for $\xi < \eta < \omega_1$. Let $\eta < \omega_1$. Since I is a p-ideal, there exists a $C_\eta \in I$ so that $A_\xi \cap A_\eta - C_\eta \in \text{Fin}$ for all $\xi < \eta$. Let $B_\eta = A_\eta - C_\eta$. Then $B_\eta \notin I$, and $B_\xi \cap B_\eta \in \text{Fin}$ for all $\xi < \eta < \omega_1$.

Suppose now towards a contradiction that there is a homomorphism $H: P(\omega)/\text{Fin} \to P(\omega)/\text{Fin}$ so that $[\text{Ker}(H)] = I$. By AKF there is some $\xi < \omega_1$ so that $B_\xi \in \text{Tr}([\text{Ker}(H)])$. By claim 2(b), this implies that $B_\xi \in I$. A contradiction. □

In Theorem 4, neither the assumption that I is a p-ideal nor the assumption that I is tall can be dropped.

References
