Normal forms for definite integer unimodular quadratic forms
HTML articles powered by AMS MathViewer
- by Shmuel Friedland
- Proc. Amer. Math. Soc. 106 (1989), 917-921
- DOI: https://doi.org/10.1090/S0002-9939-1989-0976366-6
- PDF | Request permission
Abstract:
In this paper we show that any two positive definite integer unimodular quadratic forms have a common sublattice of codimension 2. Moreover, any such form is equivalent to a semi-normal form with at most three eigenvalues different from 1.References
- J. W. S. Cassels, Rational quadratic forms, London Mathematical Society Monographs, vol. 13, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1978. MR 522835
- J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290, Springer-Verlag, New York, 1988. With contributions by E. Bannai, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. MR 920369, DOI 10.1007/978-1-4757-2016-7
- John Milnor and Dale Husemoller, Symmetric bilinear forms, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 73, Springer-Verlag, New York-Heidelberg, 1973. MR 0506372 O. T. O’Meara, Introduction to quadratic forms, Springer-Verlag, 1963.
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 106 (1989), 917-921
- MSC: Primary 11E12
- DOI: https://doi.org/10.1090/S0002-9939-1989-0976366-6
- MathSciNet review: 976366