On the regularity properties for solutions of the Cauchy problem for the porous media equation
HTML articles powered by AMS MathViewer
- by Kazuya Hayasida
- Proc. Amer. Math. Soc. 107 (1989), 107-112
- DOI: https://doi.org/10.1090/S0002-9939-1989-0948150-0
- PDF | Request permission
Abstract:
We consider the Cauchy problem for the equation ${\partial _t}u = \Delta {u^m}$ in ${R^N} \times (0,T)$. We assume that $1 < m < 3N/(3N - 2)$ and the initial data ${u_0}$ is in $C_0^1({R^N})$ and ${u_0} \geq 0$ in ${R^N}$. Then we prove that the second derivatives of ${u^m}$ with respect to the space-variable are in ${L^2}({R^N} \times (0,T))$.References
- D. G. Aronson, Regularity propeties of flows through porous media, SIAM J. Appl. Math. 17 (1969), 461–467. MR 247303, DOI 10.1137/0117045
- Donald G. Aronson and Philippe Bénilan, Régularité des solutions de l’équation des milieux poreux dans $\textbf {R}^{N}$, C. R. Acad. Sci. Paris Sér. A-B 288 (1979), no. 2, A103–A105 (French, with English summary). MR 524760
- Saïd Benachour and Mohammed-Said Moulay, Régularité des solutions de l’équation des milieux poreux en une dimension d’espace, C. R. Acad. Sci. Paris Sér. I Math. 298 (1984), no. 6, 107–110 (French, with English summary). MR 741071
- Emmanuele DiBenedetto, Regularity results for the porous media equation, Ann. Mat. Pura Appl. (4) 121 (1979), 249–262 (English, with Italian summary). MR 554779, DOI 10.1007/BF02412006 P. Bénilan, A strong regularity ${L^p}$ for solution of the porous media equation, Res. Notes in Math. 89, 39-58.
- Luis A. Caffarelli and Avner Friedman, Regularity of the free boundary of a gas flow in an $n$-dimensional porous medium, Indiana Univ. Math. J. 29 (1980), no. 3, 361–391. MR 570687, DOI 10.1512/iumj.1980.29.29027
- L. A. Peletier, The porous media equation, Applications of nonlinear analysis in the physical sciences (Bielefeld, 1979), Surveys Reference Works Math., vol. 6, Pitman, Boston, Mass.-London, 1981, pp. 229–241. MR 659697
- E. S. Sabinina, On the Cauchy problem for the equation of nonstationary gas filtration in several space variables, Soviet Math. Dokl. 2 (1961), 166–169. MR 0158190
- Frédérique Simondon, Effet régularisant local pour $u_t=(\phi (u))_{xx}$, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), no. 19, 969–972 (French, with English summary). MR 774680
- Noemí I. Wolanski, A diffusion problem with a measure as initial datum, J. Math. Anal. Appl. 102 (1984), no. 2, 365–384. MR 755968, DOI 10.1016/0022-247X(84)90177-X
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 107 (1989), 107-112
- MSC: Primary 35K55; Secondary 35K65, 76S05
- DOI: https://doi.org/10.1090/S0002-9939-1989-0948150-0
- MathSciNet review: 948150