Torsion units in alternative loop rings
HTML articles powered by AMS MathViewer
- by Edgar G. Goodaire and César Polcino Milies
- Proc. Amer. Math. Soc. 107 (1989), 7-15
- DOI: https://doi.org/10.1090/S0002-9939-1989-0953005-1
- PDF | Request permission
Abstract:
Let ${\mathbf {Z}}L$ denote the integral alternative loop ring of a finite loop $L$. If $L$ is an abelian group, a well-known result of ${\text {G}}$. Higman says that $\pm g,g \in L$ are the only torsion units (invertible elements of finite order) in ${\mathbf {Z}}L$. When $L$ is not abelian, another obvious source of units is the set $\pm {\gamma ^{ - 1}}g\gamma$ of conjugates of elements of $L$ by invertible elements in the rational loop algebra ${\mathbf {Q}}L$. H. Zassenhaus has conjectured that all the torsion units in an integral group ring are of this form. In the alternative but not associative case, one can form potentially more torsion units by considering conjugates of conjugates $\gamma _{^1}^{ - 1}\left ( {\gamma _2^{ - 1}g{\gamma _2}} \right ){\gamma _1}$ and so forth. In this paper we prove that every torsion unit in an alternative loop ring over ${\mathbf {Z}}$ is $\pm$ a conjugate of a conjugate of a loop element.References
- S. D. Berman, On the equation $x^m=1$ in an integral group ring, Ukrain. Mat. Ž. 7 (1955), 253–261 (Russian). MR 0077521
- Richard H. Bruck, Some results in the theory of linear non-associative algebras, Trans. Amer. Math. Soc. 56 (1944), 141–199. MR 11083, DOI 10.1090/S0002-9947-1944-0011083-5
- Orin Chein and Edgar G. Goodaire, Loops whose loop rings are alternative, Comm. Algebra 14 (1986), no. 2, 293–310. MR 817047, DOI 10.1080/00927878608823308
- Edgar G. Goodaire and M. M. Parmenter, Units in alternative loop rings, Israel J. Math. 53 (1986), no. 2, 209–216. MR 845872, DOI 10.1007/BF02772859
- E. G. Goodaire and M. M. Parmenter, Semisimplicity of alternative loop rings, Acta Math. Hungar. 50 (1987), no. 3-4, 241–247. MR 918159, DOI 10.1007/BF01903938
- Edgar G. Goodaire and César Polcino Milies, Isomorphisms of integral alternative loop rings, Rend. Circ. Mat. Palermo (2) 37 (1988), no. 1, 126–135. MR 994143, DOI 10.1007/BF02844273
- Graham. Higman, The units of group-rings, Proc. London Math. Soc. (2) 46 (1940), 231–248. MR 2137, DOI 10.1112/plms/s2-46.1.231
- G. Karpilovsky, On the isomorphism problem for integral group rings, J. Algebra 59 (1979), no. 1, 1–4. MR 541665, DOI 10.1016/0021-8693(79)90147-9
- C. Polcino Milies, Torsion units in group rings and a conjecture of H. J. Zassenhaus, Group and semigroup rings (Johannesburg, 1985) North-Holland Math. Stud., vol. 126, North-Holland, Amsterdam, 1986, pp. 179–192. MR 860060
- César Polcino Milies and Sudarshan K. Sehgal, Torsion units in integral group rings of metacyclic groups, J. Number Theory 19 (1984), no. 1, 103–114. MR 751167, DOI 10.1016/0022-314X(84)90095-7
- J. Marshall Osborn, Lie-admissible noncommutative Jordan loop rings, Algebras Groups Geom. 1 (1984), no. 4, 453–489. MR 785428
- Jürgen Ritter and Sudarshan K. Sehgal, On a conjecture of Zassenhaus on torsion units in integral group rings, Math. Ann. 264 (1983), no. 2, 257–270. MR 711882, DOI 10.1007/BF01457529
- Richard D. Schafer, An introduction to nonassociative algebras, Pure and Applied Mathematics, Vol. 22, Academic Press, New York-London, 1966. MR 0210757
- Sudarshan K. Sehgal, Topics in group rings, Monographs and Textbooks in Pure and Applied Mathematics, vol. 50, Marcel Dekker, Inc., New York, 1978. MR 508515
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 107 (1989), 7-15
- MSC: Primary 20N05; Secondary 17D05
- DOI: https://doi.org/10.1090/S0002-9939-1989-0953005-1
- MathSciNet review: 953005