ON THE THEOREMS OF ŠARKOVSIĬ AND ŠTEFAN ON CYCLES

BOLESŁAW GAWEŁ

(Communicated by R. Daniel Mauldin)

Abstract. New proofs of the well-known theorems of Šarkovskii and Štefan on cycles of a continuous real mapping are given.

Let us fix a real interval I and a continuous function f : I → I. For any n ∈ N we denote by fⁿ the n-th iterate of f. A point x ∈ I is said to be a periodic point of f if x is a fixed point of fⁿ for some n ∈ N. If x is periodic, the smallest n ∈ N with fⁿ(x) = x is called the period of x. Throughout this paper, Per(f, n) will stand for the set of all periodic points of f of the period n.

Let us consider the following ordering of the set N:

3, 5, 7, ..., 2 · 3, 2 · 5, 2 · 7, ..., 2ⁿ · 3, 2ⁿ · 5, ..., 2ⁿ, ..., 2², 2, 1.

The aim of this paper is to give new proofs of the following two theorems.

Theorem A (A. N. Šarkovskii). Let n ∈ N. If Per(f, n) ≠ ∅ then Per(f, m) ≠ ∅ for any m ∈ N such that n | m.

Theorem B (P. Štefan). Let n ≥ 3 be odd. Assume that Per(f, m) = ∅ for any m | n. If x₀ ∈ Per(f, n) then there exists a point x ∈ {x₀, ..., fⁿ⁻¹(x₀)} such that

x < fⁿ⁻²(x) < ⋮ < f(x) < f²(x) < ⋮ < fⁿ⁻¹(x)

or

x > fⁿ⁻²(x) > ⋮ > f(x) > f²(x) > ⋮ > fⁿ⁻¹(x).

Theorem A is a well-known result proved originally by A. N. Šarkovskii [5]. Another proof of Theorem A was given by P. Štefan in [6] who filled some gaps in Šarkovskii's argument. Making use of some parts of his proof (cf. [6, Lemmas (20) and (21)]) Štefan proved Theorem B, which shows how f acts on its minimal orbits of odd period. Chung-Wu Ho and Ch. Morris [4] also proved Theorems A and B by following some ideas of P. D. Straffin Jr. concerning directed graphs (cf. [7]). Another proof of Theorem A using the work of Straffin and digraphs was given by U. Burkart [3]. A sketch of a proof...
of Theorem of Šarkovskii may be found also in the paper [2]. Some comments concerning the history of the Šarkovskii’s result as well as the Burkart’s proof have been presented with details by Gy. Targonski in his monograph [8, Ch. 8, §2].

Up to now the greatest difficulty in proving Theorem A has been to prove it in the particular case where \(n \) is odd (Lemma 8 below). Usually it takes the largest parts of the proofs (cf. for example [5, Theorem 4 and Lemmas 5 and 6] or [6, (15), (16), (18) and Section D]). We proceed in a different, more natural way starting with a direct proof of Theorem B. Then we can simply prove Lemma 8 making use of the following three facts: Theorem B, Lemma 6 (which is actually a result of L. Block [1]), and a simple Lemma 7. Consequently we obtain another proof of Theorem B and a new, rather short and clear proof of the Theorem of Šarkovskii. Lemmas 1, 2, 3, 4, 9, and 10 are standard and may be found for example in [6]. Nevertheless we prove them (Lemma 3 in a shorter way) for the convenience of the reader. Also Lemma 6 is presented with a short argument.

Lemma 1. Assume that \(m, n \in \mathbb{N} \).

(i) \(x \in \text{Per}(f^n, 1) \) iff \(x \in \text{Per} f \) and the order of \(x \) divides \(n \).

(ii) \(\text{Per}(f, n) \subset \text{Per}(f^m, n/k) \) where \(k \) is the highest common divisor of \(n \) and \(m \).

(iii) If \(p \) is prime then \(\text{Per}(f, p^{n+m}) = \text{Per}(f^p, p^m) \).

Proof of Theorem B. If \(n = 3 \), the statement is evident. Thus we can assume that \(n \geq 5 \). Let \(C = \{x_0, \ldots, f^{n-1}(x_0)\} \). Since \(n \) is odd, there exists a point \(y \in C \) such that \(y < f(y) < f^2(y) \) or \(y > f(y) > f^2(y) \).

Assume for example the first of the above conditions. Put \(x = \min \{y \in C : y < f(y) < f^2(y)\} \) and \(y = f^{n-1}(x) \). Clearly \(x < f(x) < f^2(x) \) and \(x < y \). We show that \(f^2(x) < y \). Suppose on the contrary that \(y \in (x, f(x)) \cup (f(x), f^2(x)) \). Consider the case \(y \in (x, f(x)) \). Then

\[
 f(y) = x < y < f(x) ,
\]

whence \(\text{Per}(f, 1) \cap (x, y) \neq \emptyset \). Let \(a \) be its maximal point. Since

\[
 f^2(a) = a < y < f(x) = f^2(y)
\]

there exists a \(z_1 \in (a, y) \) such that \(f^2(z_1) = y \). Thus

\[
 f^3(z_1) = x < z_1 \quad \text{and} \quad y < f^2(x) = f^3(y)
\]

which (cf. the assumption of the theorem, Lemma 1(i), and the definition of \(a \)) is impossible. Now suppose that \(y \in (f(x), f^2(x)) \). Put \(a = \sup \text{Per}(f, 1) \cap (f(x), y) \). Since

\[
 f(a) = a < y < f(f(x))
\]

...
there is a \(z_1 \in (f(x), a) \) such that \(f(z_1) = y \). Due to the inequalities
\[
f(y) = x < z_1 < a = f(a)
\]
we can find a \(z_2 \in (a, y) \) for which \(f(z_2) = z_1 \). Therefore we have
\[
f^3(z_2) = x < z_2 \quad \text{and} \quad y < f^2(x) = f^3(y)
\]
which again leads to a contradiction. We now have that \(f^2(x) < y \).

Let us observe that, by the inequalities
\[
f(x) < y = f^{n-2}(f(x)) \quad \text{and} \quad f^{n-2}(f^2(x)) = x < f^2(x),
\]
Lemma 1(i) and the assumption of the theorem, \(\text{Per}(f, 1) \cap (f(x), f^2(x)) \neq \emptyset \).

Put
\[
a_1 = \inf \text{Per}(f, 1) \cap (f(x), f^2(x))
\]
and
\[
a_2 = \sup \text{Per}(f, 1) \cap (f(x), f^2(x)).
\]

Now, we will show, that the following condition is fulfilled for any \(k \in \{1, \ldots, (n-1)/2\} \)
\[
(1) \quad \text{if } f^{2k-1}(x) < \cdots < f(x) < f^2(x) < \cdots < f^{2k}(x), \text{ then } \nonumber
((f^{2k-1}(x), a_1) \cup (a_2, f^{2k}(x))) \cap \text{Per}(f, 1) = \emptyset.
\]

For fix a \(k \in \{1, \ldots, (n-1)/2\} \) and suppose on the contrary that (1) does not hold. Clearly we may assume that \(k \geq 2 \). At first let \(a \) be a point of \(\text{Per}(f, 1) \cap (f^{2k-1}(x), f(x)) \). From the inequality
\[
f^{2k-2}(f(x)) = f^{2k-1}(x) < a < a_1 = f^{2k-2}(a_1)
\]
we deduce, that \(f^{2k-2}(z_1) = a \) for a \(z_1 \in (f(x), a_1) \). Hence
\[
f(x) < f^{2k}(x) = f^{2k-1}(f(x))
\]
and
\[
f^{2k-1}(z_1) = f(f^{2k-2}(z_1)) = a < z_1,
\]
which contradicts our assumptions. Now suppose that \(\text{Per}(f, 1) \cap (f^{2i}(x), f^{2i+2}(x)) \neq \emptyset \) for an \(i \in \{1, \ldots, k-1\} \). Fix an element \(a \) of this set. Since
\[
f^{2i}(a_2) = a_2 < a < f^{2i+2}(x) = f^{2i}(f^2(x)),
\]
there exists a \(z_1 \in (a_2, f^2(x)) \) such that \(f^{2i}(z_1) = a \) which, in view of the inequalities
\[
f^{n-2}(f^2(x)) = x < f^2(x) \quad \text{and} \quad z_1 < a = f^{n-2}(a) = f^{n-2}(z_1),
\]
contradicts our assumptions and finishes the proof of (1).

To complete the proof of Theorem B it is enough to show inductively that, for any \(k \in \{1, \ldots, (n-1)/2\} \)
\[
(2) \quad x < f^{2k-1}(x) < \cdots < f(x) < f^2(x) < \cdots < f^{2k}(x) \leq f^{n-1}(x) = y.
\]
If \(k = 1 \) then (2) follows from the definition of \(x \). Fix a \(k \in \{1, \ldots, (n-3)/2\} \) and assume (2). At first we shall show that \(f^{2k+1}(x) \in (x, f^{2k-1}(x)) \). Suppose that \(f^{2k+1}(x) > f^{2k}(x) \). Then for an \(a \in \text{Per}(f, 1) \cap (f^{2k}(x), y) \),

\[
f^{n-3}(a) = a < a < y = f^{n-3}(f^2(x))
\]

whence there exists a \(z_1 \in (a_2, f^2(x)) \) such that \(f^{n-3}(z_1) = a \). Therefore

\[
f^{n-2}(f^2(x)) = x < f^2(x) \quad \text{and} \quad z_1 < a = f(a) = f(f^{n-3}(z_1)) = f^{n-2}(z_1)
\]

which leads to a contradiction and proves that \(f^{2k+1}(x) < f^{2k}(x) \). Now suppose that \(f^{2k+1}(x) \in (a_1, f^{2k}(x)) \). From the inequalities

\[
f^{2k-1}(a_1) = a_1 < f^{2k+1}(x) < f^{2k}(x) = f^{2k-1}(f(x))
\]

we deduce that there exists a \(z_1 \in (f(x), a_1) \) such that \(f^{2k-1}(z_1) = f^{2k+1}(x) \).

Since

\[
f^{n-2}(z_1) = f^{n-2k-1}(f^{2k-1}(z_1)) = f^{n-2k-1}(f^{2k+1}(x)) = x < z_1
\]

and

\[
f(x) < y = f^{n-2}(f(x)),
\]

there is a fixed point of \(f^{n-2} \) in \((f(x), z_1)\) which is impossible. If \(f^{2k+1}(x) \in (f^{2k-1}(x), a_1) \) then by the inequalities

\[
f^{n-2}(f^{2k+1}(x)) = f^{2k-1}(x) < f^{2k+1}(x)
\]

and

\[
f(x) < y = f^{n-2}(f(x)),
\]

the interval with the endpoints \(f(x) \) and \(f^{2k+1}(x) \) would contain a fixed point of \(f^{n-2} \) and this contradicts condition (1). At last suppose that \(f^{2k+1}(x) < x \). Putting \(a = \min(\{f(x)\} \cup (\text{Per}(f, 1) \cap (x, f(x)))) \) we have

\[
f^2(a) < a < f^2(x),
\]

whence \(f^2(z_1) = a_1 \) for a \(z_1 \in (x, a) \). Thus

\[
f^{2k+1}(x) < x \quad \text{and} \quad f^{2k+1}(z_1) = a_1 > z_1,
\]

which is impossible. Consequently, \(f^{2k+1}(x) \in (x, f^{2k-1}(x)) \).

Now we shall show that \(f^{2k+2}(x) \in (f^{2k}(x), y) \). Clearly we may assume that \(k \leq (n - 5)/2 \). At first suppose that \(y < f^{2k+2}(x) \). In view of the inequalities

\[
f^{2k+1}(a_1) = a_1 < y < f^{2k+2}(x) = f^{2k+1}(f(x))
\]

there exists a \(z_1 \in (f(x), a_1) \) such that \(f^{2k+1}(z_1) = y \). Since

\[
f^2(f(x)) < f(x) < z_1 < a_1 = f^2(a_1),
\]
\[z_1 = f^2(z_2) \] for a \(z_2 \in (f(x), a_1) \). Thus
\[
f^{2k+3}(z_1) = f^2(y) = f(x) < z_1
\]
and
\[
z_2 < y = f^{2k+1}(z_1) = f^{2k+3}(z_2),
\]
which is false and proves that \(f^{2k+2}(x) \leq y \). Suppose that \(f^{2k+2}(x) < f(x) \).

Since
\[
f^2(f(x)) < f(x) < a_1 = f^2(a_1),
\]
there exists a \(z_1 \in (f(x), a_1) \) such that \(f^2(z_1) = f(x) \). Then we have
\[
f^{2k+1}(f(x)) = f^{2k+2}(x) < f(x)
\]
and
\[
z_1 < f^{2k}(x) = f^{2k-1}(f(x)) = f^{2k+1}(z_1),
\]
which is impossible. Hence \(f^{2k+2}(x) > f(x) \). Now we shall prove that
\[
(3) \quad (f^{2k+1}(x), f^{2k-1}(x)) \cap \text{Per}(f, 1) = \emptyset.
\]
Indeed, suppose that this is not the case and put \(a = \min \text{Per}(f, 1) \cap (f^{2k+1}(x), f^{2k-1}(x)) \). Since
\[
f(a) = a < f^{2k-1}(x) \leq f(x) < a_2 < f^{2k}(x) = f(f^{2k-1}(x)),
\]
there exist a \(z_1 \in (a, f^{2k-1}(x)) \) and \(z_2, z_3 \in (f^{2k+1}(x), a) \) such that \(f(z_1) = a_2, f(z_2) = z_1, f(z_3) = f^{2k-1}(x) \). Then
\[
(f^3(z_2)) = f^2(z_1) = a_2 > z_2, \quad f^3(z_3) = f^2(f^{2k-1}(x)) = f^{2k+1}(x) < z_3,
\]
contrary to the definition of \(a \). This completes the proof of (3). Suppose that
\[
f^{2k+2}(x) \in (f(x), a_2) \). Then, since
\[
f(f^{2k+1}(x)) < a_2 < f(f(x)),
\]
we can find a \(z_1 \in (f^{2k+1}(x), f(x)) \) with \(f(z_1) = a_2 \). Furthermore, by the inequalities
\[
f(f^2(x)) = f^3(x) < f(x) < f^{2k+2}(x) < a_2 = f(a_2),
\]
there exist a \(z_2 \in (a_2, f^2(x)) \) and a \(z_3 \in (f(x), a_1) \) such that \(f(z_2) = f^{2k+2}(x) \) and \(f(z_3) = z_2 \). Thus
\[
z_1 < a_2 = f^{n-2k-1}(a_2) = f^{n-2k-1}(f(z_1)) = f^{n-2k}(z_1)
\]
and
\[
f^{n-2k}(z_3) = f^{n-2k-2}(f^{2}(z_3)) = f^{n-2k-2}(f^{2k+2}(x)) = x < z_3,
\]
which contradicts conditions (1) and (3). At last if \(f^{2k+2}(x) \in (a_2, f^{2k}(x)) \) then
\[
f^{n-2}(f^{2k}(x)) = f^{2k-2}(x) < f^{2k}(x)
\]
and
\[f^{2k+2}(x) < f^{2k}(x) = f^{n-2}(f^{2k+2}(x)), \]
contrary to (1). This completes the proof of Theorem B.

The proof of Theorem A consists of the following Lemmas 2–10.

Lemma 2. If \(\text{Per}(f, n) \neq \emptyset\) for some \(n \in \mathbb{N}\) then \(\text{Per}(f, 1) \neq \emptyset\).

Lemma 3. If \(\text{Per}(f, n) \neq \emptyset\) for some \(n \geq 2\) then \(\text{Per}(f, 2) \neq \emptyset\).

Proof. Fix an \(x_0 \in \text{Per}(f, n)\) and put \(x = \min\{x_0, \ldots, f^{n-1}(x_0)\}\). Let \(y \in \{x_0, \ldots, f^{n-1}(x_0)\}\) and \(z \in [x, y)\) be such that \(f(y) = x\) and \(f(z) = y\). If \(z = x\) then \(x \in \text{Per}(f, 2)\). Thus we may assume that \(x < z\). Put
\[u = \sup\{v \in [x, z]: f^2(v) = v\}. \]
Then \(u < z\). Suppose that \(f(u) = u\) and choose an \(a \in (z, y) \cap \text{Per}(f, 1)\). Since
\[f(u) = u < a < y = f(z) \]
we have \(a = f(b)\) for some \(b \in (u, z)\). Thus \(f^2(b) > b\) and \(f^2(z) < z\) contrary to the definition of \(u\). Consequently \(u \in \text{Per}(f, 2)\).

Lemma 4. Let \(n \in \mathbb{N}\). If \(\text{Per}(f, 2^n) \neq \emptyset\) then \(\text{Per}(f, 2^k) \neq \emptyset\) for any \(k \in \{0, \ldots, n\}\).

Proof. It is enough to consider \(k \in \{2, \ldots, n\}\) only. By Lemma 1(iii) \(\text{Per}(f^{2^{k-1}}, 2^{n-k+1}) \neq \emptyset\). Using Lemma 3 and Lemma 1(iii) again we have
\[\emptyset \neq \text{Per}(f^{2^{k-1}}, 2) = \text{Per}(f, 2^k). \]

Lemma 5. Let \(k \in \mathbb{N}_0\) and let \(l \geq 3\) be odd. If \(\text{Per}(f, 2^k \cdot l) \neq \emptyset\) then \(\text{Per}(f, 2^n) \neq \emptyset\) for any \(n \in \mathbb{N}_0\).

Proof. Use Lemma 1(ii) (taking \(n = 2^k l, m = 2^{n+k}\)), Lemma 3, and then Lemmas 1(iii) and 4.

Lemma 6. If
\[f^{2k}(x_0) < \cdots < f^2(x_0) < x_0 < f(x_0) < \cdots < f^{2k-1}(x_0), \quad f^{2k+1}(x_0) \leq x_0 \]
or
\[f^{2k}(x_0) > \cdots > f^2(x_0) > x_0 > f(x_0) > \cdots > f^{2k-1}(x_0), \quad f^{2k+1}(x_0) \geq x_0 \]
for some \(x_0 \in I\) and \(k \in \mathbb{N}\) then \(\text{Per}(f, 2k + 1) \neq \emptyset\).

Proof. Let us assume that the first of the above conditions holds and fix an \(a \in (x_0, f(x_0)) \cap \text{Per}(f, 1)\). Let \(I_0, \ldots, I_{2k+1}\) be compact intervals such that
\[I_{2k+1} = [x_0, f^{2k-1}(x_0)], \]
\(I_i\) is contained in the compact interval with the endpoints
\[f^i(x_0) \text{ and } f^{i-2}(x_0), \quad i = 2k, \ldots, 2, \]
\(I_1 \subset [a, f(x_0)], \quad I_0 \subset [x_0, a], \quad f(I_i) = I_{i+1}, \quad i = 2k, \ldots, 0.\)
Then \(f^{2k+1}(I_0) = I_{2k+1} \supset I_0 \) whence we can find a \(c \in I_0 \cap \text{Per}(f^{2k+1}, 1) \). Thus it follows from the relations

\[
f'^i(I_0) \cap I_0 \subset \{x_0\}, \quad i = 2, \ldots, 2k \quad \text{and} \quad f(I_0) \cap I_0 \subset \{a\}
\]

that \(c \in \text{Per}(f, 2k+1) \).

Lemma 7. Assume that there exists an \(x_0 \in I \) such that

\[
f^2(x_0) < x_0 < f(x_0) \quad \text{and} \quad f^3(x_0) \leq a
\]
or

\[
f^2(x_0) > x_0 > f(x_0) \quad \text{and} \quad f^3(x_0) \geq a
\]

where \(a \in \text{Per}(f, 1) \) belongs to the interval with the endpoints \(x_0 \) and \(f(x_0) \).

Then, for any \(k \in \mathbb{N} \), \(\text{Per}(f, 2k) \neq \emptyset \).

Proof. Assume the first of the above cases. Take \(x_{-1} = f(x_0) \). Since

\[
f(f(x_0)) < x_0 < a = f(a),
\]

there is an \(x_1 \in (a, f(x_0)) \) such that \(f(x_1) = x_0 \). By the inequalities

\[
f(a) = a < x_1 < f(x_0)
\]

we can find an \(x_2 \in (x_0, a) \) with \(f(x_2) = x_1 \). Continuing this procedure inductively we obtain a sequence \((x_n : n \in \mathbb{N}) \) with the properties

\[
x_{2n-2} < x_{2n} < a < x_{2n-1} < x_{2n-3} \quad \text{and} \quad f(x_n) = x_{n-1}, \quad n \in \mathbb{N}.
\]

Let \(I_0, \ldots, I_{2k} \) be compact intervals such that

\[
I_{2k} = [f^3(x_0), f(x_0)], \quad I_{2k-1} \subset [f^2(x_0), x_0],
\]

\(I_i \) is contained in the compact interval with the endpoints

\[
x_{2k-i-1} \quad \text{and} \quad x_{2k-i-3}, \quad i = 2k - 2, \ldots, 0,
\]

\[
f(I_i) = I_{i+1}, \quad i = 2k - 1, \ldots, 0.
\]

Then \(f^{2k}(I_0) = I_{2k} \supset I_0 \) whence there is a \(c \in I_0 \cap \text{Per}(f^{2k}, 1) \). Thus, due to the relations

\[
f'^i(I_0) \cap I_0 = I_i \cap I_0 = \emptyset, \quad i \in \{1, \ldots, 2k-1\}\setminus\{2\},
\]

and (in the case \(k > 1 \))

\[
f^2(I_0) \cap I_0 = I_2 \cap I_0 = \{x_{2k-3}\},
\]

\(c \in \text{Per}(f, 2k) \) which was to be proved.

Lemma 8. Let \(n \geq 3 \) be odd. If \(\text{Per}(f, n) \neq \emptyset \) then \(\text{Per}(f, m) \neq \emptyset \) for any \(m \in \mathbb{N} \) such that \(n \nmid m \).

Proof. It is enough to consider the case where \(\text{Per}(f, k) = \emptyset \) for any \(k \nmid n \).

In view of Theorem B we may assume for example that

\[
f^{n-1}(y_0) < \cdots < y_0 < f(y_0) < \cdots < f^{n-2}(y_0)
\]
for a \(y_0 \in \text{Per}(f, n) \). If \(m \) is even then, taking \(x_0 = f^{n-3}(y_0) \) in Lemma 7, we get the assertion. Assume that \(m > n \) is odd. Proceeding analogously as in the proof of Lemma 7 we get the sequence \((y_i : i = 1, \ldots, m - n) \) such that

\[
y_0 < y_2 < \cdots < y_{m-n} < y_{m-n-1} < \cdots < y_1 < f(y_0)
\]

and

\[
f(y_i) = y_{i-1}, \quad i = 1, \ldots, m - n.
\]

Now it is enough to put \(x_0 = y_{m-n} \) and use Lemma 6.

Lemma 9. Let \(n \geq 2 \). If \(\text{Per}(f^2, n) \neq \emptyset \) then \(\text{Per}(f, 2n) \neq \emptyset \).

Proof. Let \(x_0 \in \text{Per}(f^2, n) \) and let \(r = \text{card}\{x_0, \ldots, f^{2n-1}(x_0)\} \). Clearly \(r \geq n \) and \(r \leq 2n \). Thus, \(r \in \{n, 2n\} \). If \(n \) is even then \(f^n(x_0) \neq x_0 \) whence \(r = 2n \) and \(x_0 \in \text{Per}(f, 2n) \). If \(n \) is odd and \(r = n \) we may use Lemma 8.

Lemma 10. Let \(n \in \mathbb{N}_0 \) and let \(l \geq 3 \) be odd. If \(\text{Per}(f, 2^n l) \neq \emptyset \) then \(\text{Per}(f, 2^m k) \neq \emptyset \) for \(m = n \) and any odd \(k \geq l \) and for any \(m > n \) and odd \(k \geq 3 \).

Proof. If \(n = 0 \) the assertion follows from Lemma 8. Fix an \(n \in \mathbb{N} \) and assume that the lemma holds for \(n - 1 \). By Lemma 1(ii) \(\text{Per}(f^2, 2^{n-1} l) \neq \emptyset \). Hence, in view of the induction hypothesis,

\[
\text{Per}(f^2, 2^{m-1} k) \neq \emptyset, \quad m > n \text{ and } k \geq 3 \quad \text{or} \quad m = n \text{ and } k \geq 1.
\]

Now use Lemma 9.

References

Department of Mathematics, Silesian University, Bankowa 14, 40-007 Katowice, Poland