The Cauchy transform on bounded domains
Authors:
J. M. Anderson and A. Hinkkanen
Journal:
Proc. Amer. Math. Soc. 107 (1989), 179-185
MSC:
Primary 30E20; Secondary 47G05
DOI:
https://doi.org/10.1090/S0002-9939-1989-0972226-5
MathSciNet review:
972226
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Suppose that is in
where
is the unit disk, and that
outside
. We show that then the Cauchy transform
of
, when restricted to
, satisfies
, where
is the smallest positive zero of the Bessel function
. This inequality is sharp.
- [1] David W. Boyd, Best constants in a class of integral inequalities, Pacific J. Math. 30 (1969), 367–383. MR 249556
- [2] D. H. Hamilton, On the Poincaré inequality, Complex Variables Theory Appl. 5 (1986), no. 2-4, 265–270. MR 846494, https://doi.org/10.1080/17476938608814146
- [3] O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, 2nd ed., Springer-Verlag, New York-Heidelberg, 1973. Translated from the German by K. W. Lucas; Die Grundlehren der mathematischen Wissenschaften, Band 126. MR 0344463
- [4] Vladimir G. Maz’ja, Sobolev spaces, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985. Translated from the Russian by T. O. Shaposhnikova. MR 817985
- [5] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- [6] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944. MR 0010746
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30E20, 47G05
Retrieve articles in all journals with MSC: 30E20, 47G05
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1989-0972226-5
Article copyright:
© Copyright 1989
American Mathematical Society