A note on joint hyponormality
HTML articles powered by AMS MathViewer
- by Scott McCullough and Vern Paulsen
- Proc. Amer. Math. Soc. 107 (1989), 187-195
- DOI: https://doi.org/10.1090/S0002-9939-1989-0972236-8
- PDF | Request permission
Abstract:
We describe certain cones of polynomials in two variables naturally associated to the class(es) of operators $T$ for which the tuple $(T,{T^2}, \ldots ,{T^n})$ is jointly (weakly) hyponormal. As an application we give an example of an operator $T$ such that the tuple $(T,{T^2})$ is jointly but not weakly hyponormal. Further, we show that there exists a polynomially hyponormal operator which is not subnormal if and only if there exists a weighted shift with the same property.References
- Jim Agler, Hypercontractions and subnormality, J. Operator Theory 13 (1985), no. 2, 203–217. MR 775993
- Jim Agler, Rational dilation on an annulus, Ann. of Math. (2) 121 (1985), no. 3, 537–563. MR 794373, DOI 10.2307/1971209
- Ameer Athavale, On joint hyponormality of operators, Proc. Amer. Math. Soc. 103 (1988), no. 2, 417–423. MR 943059, DOI 10.1090/S0002-9939-1988-0943059-X
- Joseph Bram, Subnormal operators, Duke Math. J. 22 (1955), 75–94. MR 68129
- John B. Conway and Wacław Szymański, Linear combinations of hyponormal operators, Rocky Mountain J. Math. 18 (1988), no. 3, 695–705. MR 972659, DOI 10.1216/RMJ-1988-18-3-695 R. E. Curto, Proceedings of the A.M.S. Summer Research Institute, 1988, (to appear). —, Quadratically hyponormal weighted shifts, preprint.
- Raúl E. Curto, Paul S. Muhly, and Jingbo Xia, Hyponormal pairs of commuting operators, Contributions to operator theory and its applications (Mesa, AZ, 1987) Oper. Theory Adv. Appl., vol. 35, Birkhäuser, Basel, 1988, pp. 1–22. MR 1017663
- Mary R. Embry, A generalization of the Halmos-Bram criterion for subnormality, Acta Sci. Math. (Szeged) 35 (1973), 61–64. MR 328652
- Peng Fan, A note on hyponormal weighted shifts, Proc. Amer. Math. Soc. 92 (1984), no. 2, 271–272. MR 754718, DOI 10.1090/S0002-9939-1984-0754718-2
- Alan Lambert, Subnormality and weighted shifts, J. London Math. Soc. (2) 14 (1976), no. 3, 476–480. MR 435915, DOI 10.1112/jlms/s2-14.3.476
- Arthur Lubin, Weighted shifts and products of subnormal operators, Indiana Univ. Math. J. 26 (1977), no. 5, 839–845. MR 448139, DOI 10.1512/iumj.1977.26.26067
- Mircea Martin and Mihai Putinar, A unitary invariant for hyponormal operators, J. Funct. Anal. 73 (1987), no. 2, 297–323. MR 899653, DOI 10.1016/0022-1236(87)90070-X
- Béla Sz.-Nagy, A moment problem for self-adjoint operators, Acta Math. Acad. Sci. Hungar. 3 (1952), 285–293 (1953) (English, with Russian summary). MR 55583, DOI 10.1007/BF02027827 Slocinski, Normal extensions of commuting subnormal operators, Studia Math. 54 (1976), 259-266.
- Daoxing Xia, Spectral theory of hyponormal operators, Operator Theory: Advances and Applications, vol. 10, Birkhäuser Verlag, Basel, 1983. MR 806959, DOI 10.1007/978-3-0348-5435-1
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 107 (1989), 187-195
- MSC: Primary 47B20
- DOI: https://doi.org/10.1090/S0002-9939-1989-0972236-8
- MathSciNet review: 972236