The asymptotics of the determinant function for a class of operators
HTML articles powered by AMS MathViewer
- by Leonid Friedlander
- Proc. Amer. Math. Soc. 107 (1989), 169-178
- DOI: https://doi.org/10.1090/S0002-9939-1989-0975642-0
- PDF | Request permission
Abstract:
Let $A$ be an elliptic pseudodifferential operator on a closed manifold $M$ and ${\text {ord}}A > \dim M$. We derive the asymptotics of $\log \det (1 + \varepsilon {A^{ - 1}})$ when $\varepsilon \to \infty$. The constant term of this asymptotics equals $- \log \det A$.References
- R. T. Seeley, Complex powers of an elliptic operator, Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966) Amer. Math. Soc., Providence, R.I., 1967, pp. 288–307. MR 0237943
- Michael E. Taylor, Pseudodifferential operators, Princeton Mathematical Series, No. 34, Princeton University Press, Princeton, N.J., 1981. MR 618463, DOI 10.1515/9781400886104
- M. A. Shubin, Pseudodifferential operators and spectral theory, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1987. Translated from the Russian by Stig I. Andersson. MR 883081, DOI 10.1007/978-3-642-96854-9
- N. N. Vakhania, Probability distributions on linear spaces, North-Holland Series in Probability and Applied Mathematics, North-Holland Publishing Co., New York-Amsterdam, 1981. Translated from the Russian by I. I. Kotlarski. MR 626346
- M. S. Agranovich, Some asymptotic formulas for elliptic pseudodifferential operators, Funktsional. Anal. i Prilozhen. 21 (1987), no. 1, 63–65 (Russian). MR 888015 H. Bateman and A. Erdelyi, Higher transcendental functions, Vol. 1, McGraw-Hill Comp. Inc., New York-Toronto-London, 1953.
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 107 (1989), 169-178
- MSC: Primary 58G15; Secondary 47B25, 47B38, 47G05
- DOI: https://doi.org/10.1090/S0002-9939-1989-0975642-0
- MathSciNet review: 975642