Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Tutte polynomials and bicycle dimension of ternary matroids
HTML articles powered by AMS MathViewer

by François Jaeger PDF
Proc. Amer. Math. Soc. 107 (1989), 17-25 Request permission

Abstract:

Let $M$ be a ternary matroid, $t\left ( {M,x,y} \right )$ be its Tutte polynomial and $d\left ( M \right )$ be the dimension of the bicycle space of any representation of $M$ over ${\text {GF}}\left ( 3 \right )$. We show that, for $j = {e^{2i\pi /3}}$, the modulus of the complex number $t\left ( {M,j,{j^2}} \right )$ is equal to ${\left ( {\sqrt 3 } \right )^{d\left ( M \right )}}$. The proof relies on the study of the weight enumerator ${W_\mathcal {C}}\left ( y \right )$ of the cycle space $\mathcal {C}$ of a representation of $M$ over ${\text {GF}}\left ( 3 \right )$ evaluated at $y = j$. The main tool is the concept of principal quadripartition of $\mathcal {C}$ which allows a precise analysis of the evolution of the relevant invariants under deletion and contraction of elements. Soit $M$ un matroïde ternaire, $t\left ( {M,x,y} \right )$ son polynôme de Tutte et $d\left ( M \right )$ la dimension de l’espace des bicycles d’une représentation quelconque de $M$ sur ${\text {GF}}\left ( 3 \right )$. Nous montrons que, pour $j = {e^{2i\pi /3}}$, le module du nombre complexe $t\left ( {M,j,{j^2}} \right )$ est égal à ${\left ( {\sqrt 3 } \right )^{d\left ( M \right )}}$. La preuve s’appuie sur l’étude de l’énumérateur de poids ${W_\mathcal {C}}\left ( y \right )$ de l’espace des cycles $\mathcal {C}$ d’une représentation de $M$ sur ${\text {GF}}\left ( 3 \right )$ pour la valeur $y = j$. L’outil essentiel est le concept de quadripartition principale de $\mathcal {C}$ qui permet une analyse précise de l’évolution des invariants concernés relativement à la suppression ou contraction d’éléments.
References
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC: 05B35
  • Retrieve articles in all journals with MSC: 05B35
Additional Information
  • © Copyright 1989 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 107 (1989), 17-25
  • MSC: Primary 05B35
  • DOI: https://doi.org/10.1090/S0002-9939-1989-0979049-1
  • MathSciNet review: 979049