The linear and quadratic Schur subgroups over the $S$-integers of a number field
HTML articles powered by AMS MathViewer
- by Carl R. Riehm
- Proc. Amer. Math. Soc. 107 (1989), 83-87
- DOI: https://doi.org/10.1090/S0002-9939-1989-0979218-0
- PDF | Request permission
Abstract:
Let $K$ be an algebraic number field and let $\mathfrak {O}$ be a ring of $S$-integers in $K$ (where $S$ is a set of primes of $K$ containing all the archimedean primes); that is to say, $\mathfrak {O}$ is a Dedekind domain whose field of quotients is $K$. In analogy with a theorem of T. Yamada in the case of a field of characteristic 0, it is shown that if $S\left ( \mathfrak {O} \right )$ is the Schur subgroup of the Brauer group $B\left ( \mathfrak {O} \right )$ and if $\mathfrak {o} = \mathfrak {O} \cap k$, where $k$ is any field containing the maximal abelian extension of $\mathbb {Q}$ in $K$, then $S\left ( \mathfrak {O} \right ) = \mathfrak {O} \otimes S\left ( \mathfrak {o} \right )$, i.e. the Brauer classes in $S\left ( \mathfrak {O} \right )$ are those obtained from $S\left ( \mathfrak {o} \right )$ by extension of the scalars to $\mathfrak {O}$. A similar theorem is proved as well in the case of the Schur subgroup $S\left ( {\mathfrak {O},\omega } \right )$ of the quadratic Brauer group $B\left ( {\mathfrak {O},\omega } \right )$, where $\omega$ is an involution of $\mathfrak {O}$.References
- Ian Hambleton, Laurence Taylor, and Bruce Williams, An introduction to maps between surgery obstruction groups, Algebraic topology, Aarhus 1982 (Aarhus, 1982) Lecture Notes in Math., vol. 1051, Springer, Berlin, 1984, pp. 49–127. MR 764576, DOI 10.1007/BFb0075564
- I. Martin Isaacs, Character theory of finite groups, Pure and Applied Mathematics, No. 69, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976. MR 0460423
- G. J. Janusz, Tensor products of orders, J. London Math. Soc. (2) 20 (1979), no. 2, 186–192. MR 551444, DOI 10.1112/jlms/s2-20.2.186
- R. Mollin, The Schur group of a field of characteristic zero, Pacific J. Math. 76 (1978), no. 2, 471–478. MR 506148, DOI 10.2140/pjm.1978.76.471 I. Reiner, Maximal orders, London Math. Soc. Monographs, no. 5, Academic Press, London, 1975.
- Morris Orzech and Charles Small, The Brauer group of commutative rings, Lecture Notes in Pure and Applied Mathematics, Vol. 11, Marcel Dekker, Inc., New York, 1975. MR 0457422
- C. Riehm, The Schur subgroup of the Brauer group of cyclotomic rings of integers, Proc. Amer. Math. Soc. 103 (1988), no. 1, 27–30. MR 938638, DOI 10.1090/S0002-9939-1988-0938638-X
- C. Riehm, The quadratic Schur subgroup over local and global fields, Math. Ann. 283 (1989), no. 3, 479–489. MR 985243, DOI 10.1007/BF01442740
- David J. Saltman, Azumaya algebras with involution, J. Algebra 52 (1978), no. 2, 526–539. MR 495234, DOI 10.1016/0021-8693(78)90253-3
- Toshihiko Yamada, The Schur subgroup of the Brauer group, Lecture Notes in Mathematics, Vol. 397, Springer-Verlag, Berlin-New York, 1974. MR 0347957, DOI 10.1007/BFb0061703
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 107 (1989), 83-87
- MSC: Primary 11R65; Secondary 11R54, 13A20, 20C10
- DOI: https://doi.org/10.1090/S0002-9939-1989-0979218-0
- MathSciNet review: 979218