Zero cycles on quadric hypersurfaces
Author:
Richard G. Swan
Journal:
Proc. Amer. Math. Soc. 107 (1989), 43-46
MSC:
Primary 14C25; Secondary 11E04
DOI:
https://doi.org/10.1090/S0002-9939-1989-0979219-2
MathSciNet review:
979219
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let be a projective quadric hypersurface over a field of characteristic not 2. It is shown that the Chow group
of 0-cycles modulo rational equivalence is infinite cyclic, generated by any point of minimal degree.
- [1] William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR 732620
- [2] T. Y. Lam, The algebraic theory of quadratic forms, W. A. Benjamin, Inc., Reading, Mass., 1973. Mathematics Lecture Note Series. MR 0396410
- [3] Richard G. Swan, Vector bundles, projective modules and the 𝐾-theory of spheres, Algebraic topology and algebraic 𝐾-theory (Princeton, N.J., 1983) Ann. of Math. Stud., vol. 113, Princeton Univ. Press, Princeton, NJ, 1987, pp. 432–522. MR 921488
- [4] Richard G. Swan, 𝐾-theory of quadric hypersurfaces, Ann. of Math. (2) 122 (1985), no. 1, 113–153. MR 799254, https://doi.org/10.2307/1971371
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 14C25, 11E04
Retrieve articles in all journals with MSC: 14C25, 11E04
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1989-0979219-2
Article copyright:
© Copyright 1989
American Mathematical Society