Zero cycles on quadric hypersurfaces
HTML articles powered by AMS MathViewer
- by Richard G. Swan
- Proc. Amer. Math. Soc. 107 (1989), 43-46
- DOI: https://doi.org/10.1090/S0002-9939-1989-0979219-2
- PDF | Request permission
Abstract:
Let $X$ be a projective quadric hypersurface over a field of characteristic not 2. It is shown that the Chow group ${A_0}(X)$ of $0$-cycles modulo rational equivalence is infinite cyclic, generated by any point of minimal degree.References
- William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR 732620, DOI 10.1007/978-3-662-02421-8
- T. Y. Lam, The algebraic theory of quadratic forms, Mathematics Lecture Note Series, W. A. Benjamin, Inc., Reading, Mass., 1973. MR 0396410
- Richard G. Swan, Vector bundles, projective modules and the $K$-theory of spheres, Algebraic topology and algebraic $K$-theory (Princeton, N.J., 1983) Ann. of Math. Stud., vol. 113, Princeton Univ. Press, Princeton, NJ, 1987, pp. 432–522. MR 921488
- Richard G. Swan, $K$-theory of quadric hypersurfaces, Ann. of Math. (2) 122 (1985), no. 1, 113–153. MR 799254, DOI 10.2307/1971371
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 107 (1989), 43-46
- MSC: Primary 14C25; Secondary 11E04
- DOI: https://doi.org/10.1090/S0002-9939-1989-0979219-2
- MathSciNet review: 979219