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Abstract. Let ßf be a finite-dimensional complex Hubert space. In this ar-

ticle we characterize the linear isometries of the Banach space HL onto it-

self. We show that T is such an isometry iff T is of the form TF(z) =

UF(ij/(z))ij/'(z), for F 6 Hl, and z in the unit disc, where y is a confor-

mai map of the disc onto itself, and U is a unitary operator on %" .

I. Introduction

Let D denote the open unit disc in the complex plane and E be a finite-

dimensional complex Banach space. Then HPE stands for the Banach space of

all F : D —» E such that (F, e*) belongs to the Hardy class Hp for all e* G E.

The norm on HPE is given by

\\Fh = {èïfjFieit)llPdt} " >   p<O0>

IIFH^ = esssup||/V')|| ( = sup||F(z)
V     ZED

(We use the same symbol F to denote the corresponding LPE element on the

unit circle.) When £ is a Hubert space we write Sf foxE, and refer to [7]

for the properties of H%,.

The isometries of H°° were determined by de Leeuw, Rudin and Wermer

[5] and quite independently by Nagasawa [10]. Their results were generalized to

the context of H^ in [1]. In [5] the isometries of Hx are also described. The

method is to use the characterization of the closure of the set of extreme points

of the unit ball in H that was established in [4] in order to reduce the problem

to the H°° case via division by an H function. A complete accounting of

these results can be found in the book by Hoffman [8, Chapter 9].

In this article we establish an analogous description of the isometries of H# .

Our proof, however, requires a quite different approach, since it is known that,

when one considers the closure of the set of extreme points of the unit ball,
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the situation changes radically as we pass from the scalar to the vector case

[2, Theorem 5]. Moreover, reduction to the H°° case via division by an H

function is no longer possible if that function is vector valued.

We use principally the characterization of the set of extreme points of the

unit ball in H# (rather than their closure) as given in [2], and the Gleason-

Kahane-Zelazko theorem to establish the following.

Theorem. Let ^ be a complex Hilbert space of finite dimension and let T: H^,

—► Hep be a surjective isometry. Then there exists a conformai map w of D

onto D and a fixed unitary operator U : %? —» SV such that for any F G H%,

and any z G D,

(*) TF(z) = UF(w(z))w'iz).

Since obviously any map of form (*) is a surjective isometry, our theorem

in fact characterizes the isometries of H^,. When %? is of dimension one,

U of course reduces to a complex number of modulus one, and we have the

scalar result of [5]. The particular conformai map of the disc onto itself given

by z —» (z - z0)/( 1 - z0z), for some fixed element z0 e D, will be abbreviated

by Bz . Throughout §2 %? will denote a complex Hilbert space of fixed finite

dimension n and {ex, ... ,en} is a fixed orthonormal, basis of %?. Given

F G H'r the coordinate functions f are defined by f = {F,e¡), so that

F = J2"j=\ fjej ■ 9D denotes the boundary of D and AiD) is the space of all

complex functions continuous on D and analytic on D. Constant functions

are denoted by boldface type and, for z g D, pz denotes the unit point mass

concentrated at z.

2. The isometries

Our theorem will be established by means of a sequence of propositions

and lemmas. The first proposition is merely a restatement of [2, Definition

1 and Theorem 2], while the second is a very particular case of the Gleason-

Kahane-Zelazko theorem [11, p. 233]. The third proposition is an elementary

observation.

Proposition 1. An element F G Hxr, F ^ 0, is not an extreme point of the ball

of radius \\F\\X if and only if F = q ■ G, where G G H^ and q is a nontrivial

inner function.

Proposition 2. Let M be a subspace of AiD) of codimension one which contains

no invertible elements. Then M = {/ G AiD) : /(z0) = 0} for some zqgD .

Proposition 3. Let B be a linear space and let A, M be subspaces of B. Then if

dimiB/M) = n we have dim(^/^nAf) < «. Moreover, if A, B are topological

linear spaces such that the topology on A is stronger than the topology it inherits

from B, and if M is closed in B, then An M is closed in A .
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Proposition 4. Let V be a complex vector space and let {v*, ... ,v*} be a set

of linearly independent functionals on V. Then the space

A := (iv*xiv),v*2iv), ... ,v*niv)): v G V}

is all of C .

Proof. If A were a proper subspace of C" then there would exist a nonzero

linear map O: C" —> C such that A ç ker(<ï>).  Since for (a,, ... ,an) G A,

Q>iiax, ... , an)) = J2"=l tjCij, for certain complex numbers t   not all of which

are zero, we would have J2"j=\ t¡v*¡ = 0 •

Our principal lemma is the following:

Lemma 1. Let T: H%, —» H^ be a surjective linear isometry. Then there is

a map <p: D —► D and, for each z G D, there is a surjective linear operator

t/0(z): X -» %* such that for F G H^ we have

(1) TFi<piz)) = U0iz)Fiz).

Proof Fix z0G D and set S := {BZq ■ F: F G H#} and M = 7(5). Then

5 is a closed subspace of H# of codimension n and thus so is M. We let

An denote the linear subspace of H^ which is the set {J2j=i fjef f¡ e -4CP)}

normed by  II V]" .f¡e¡ 111= max,{||/,|l   }.   Then A„  can be identified in aj    mi   ¿-^j = i^j   j   mi y i ii.'j nooJ n

natural way with a function algebra defined on n disjoint copies of the closed

unit disc nD := D u • • • U D in summands) and we set N = M n An . By

Proposition 3,

(i) the codimension of N in An is not greater than n , and, by Proposition

1, no element F G N can be an extreme point of the ball in H# of radius

ll-FH, (because this is true of the elements of 5 and T is an isometry).

Thus, in particular, if Y^"=x fie G N then

(ii) for each j the function f. is not invertible in AiD). (An invertible

element of AiD) is necessarily outer [4, p. 469].)

We will show by induction on n that any subspace N of An having both

properties (i) and (ii) is an L°°-sum of the form

(2) N = Nx®ooN2®oo---®ooNn,

where for each j, 1 < j < n, A is (isometric to) a subspace of AiD) with

codimension 1 (under the obvious map which identifies f,e¡ with fß .

This fact is trivially true for n — 1, so we assume it holds for n = 1,2, ... ,k

and that A is a subspace of Ak+X having properties (i) ana (ii). Let px, ... ,

pk+x be measures on d +XD := dD U • • • U dD   ik + 1 summands) such that

N = fl,=i' ker(w ) • (We do not, of course, assume that the 'p., necessarily

constitute a linearly independent set of functionals.) For each ;' with I < j <

k + 1 write
1    ,       2

Pj = Pj + Pj ,
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where p}, is the restriction of p. to dkD (the union of the first k circles) and

p. the restriction to the last circle. We will prove that px ,p2, ... ,ßk+x are

linearly dependent as elements of iAk)*.

For if we assume the contrary then, by Proposition 4, we would have that

{(p\(F),p2(F), ... ,pk+x(F)): F GAk} = Ck+X

so that there would exist an F0 g Ak with

fi){.F0) = -p)ilek+x),       j=l,...,k+l.

Hence FQ + lek+x G fL*| ker(u.) contradicting the hypothesis (ii). This con-

tradiction proves our claim regarding the linear dependence of the functionals
i     i i

P\ >P2 > ■•■ ""it+i •

Thus, without loss of generality we may assume that pk+x = 0. (For other-

wise, if pxk+x = Y?j=\ ajß) » we may replace the set {px, ... ,Pk+l} by

{ux,...,vk+x}

where v. = p, if j < k and vk+x = pk+x - 5ZLi a¡P¡ > and note that

k+\ k+\

f|ker(I/7)=f|ker(^.) = A,
j=\ j=\

and vk+l =0.) Hence, making this assumption, we set A' := f]J=x keripj).

Then A' is a subspace of Ak of codimension not greater than k. And we

observe that if £*_, fe, G N' then X)y=i /)*/ + ®ek+\ e A so that, since A

has property (ii), the same is true of A'. Thus by the inductive hypothesis we

have

N' = Ni&oo...&ooNk

where for each j, 1 < j < k , A is a subspace of AiD) of codimension one

consisting entirely of noninvertible elements. It hence follows that, without loss

of generality, we can and do assume that px is supported on the jth circle of

d D and, to end the inductive proof regarding the nature of A, it is enough

to show that, for 1 < j < k , p. is a scalar multiple of pk+x = pk+x.

If we assume this is not the case then there would exist a j0, 1 < j0 < k,

and an /0 g AiD) such that p2k+xif0ek+x) = 0 but ß2joif0ek+x) = 1. Note that

pxA\ej) t¿ 0 for 1 < j < n , (since 1 is invertible and kerfV.) = A.) so there

are scalars a,. G C such that u](aAe.) = -p2¡ifr.e.,.). SetJ w ^   J     J Jv u "+'

k

F = J2ajleJ+f0ek+x.
j=\
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We have F g (\¡1\ ker(/i.) = A but F does not satisfy (ii) since at least

a ,¿ 0. This contradiction completes the proof that A has the form specified

in°(2).

Thus if F G N, F = £"=1 fj€j where, for each j, f G A , a subspace of

AiD) of codimension one consisting entirely of noninvertible elements. Hence,

by Proposition 2, for each j there is a unique w. G D such that fÁWj) = 0

for all such F = T" , />,. G A.

We claim that, in fact, all of the to. belong to D. For if, say, the first k of

the Wj belongs to dD and the remainder were points of D, and if we denote

by A the closure of A in H#, then A would consist of all elements of the

form Yl"=\ fjej > where the f, are arbitrary elements of Hx for I < j < k , and

f, G ker(//UJ ) forj>k. Thus A would be a subspace of H^, of codimension

n-k; whereas A ç M, a subspace of codimension n .

This contradiction shows that indeed all of the w. are points of D, and it

is then obvious that we must have wx — w2 — ■ ■ ■ = wn = w0, for some unique

point w0 G D. For if we had w. ^ wk for some j, k with 1 < j < k < n

then the element F = S   e,+B„, e, would belong to A ç M. But M contains
Wj    J W/f     K

no extreme points of the ball of radius \¡2, so that by Proposition 1 F must

be divisible by a nontrivial inner function, and this is clearly impossible. Thus

w. — w0 for all j as claimed.

Hence, given a point z0 g D determining the subspace S as in the first

paragraph of this proof, we define <piz0) to be this point w0 . Then what we

have established is that q> is a map from D to D such that for any z G D and

for any F G H^ with TF G An ,

(3) if   F(z) = 0   then    rF(ç»(z)) = 0.

We must show that (3) holds for all F G H^ (not simply for F g T~xiAn)).

Now for any z G D we have two linear maps

HX^3F^Fiz)G^

and

HX^^F^TFi(piz))G^

from a Banach space onto a finite-dimensional Banach space, which (e.g. by

consideration of the Poisson integral), are both easily seen to be continuous.

Since, when the functionals are restricted to the dense subspace A := T~ iAn)

of H^ we have ker^lj ç ker( K21 ^ ) it follows that ker(Fj) ç ker(K,) so

that (3) holds for all F G H^,. We thus define, for e G X, [í/0(z)](e) by

[U0iz)]ie) = V2iF), where F is any element of HXT such that V2(F) - e.

Then U0(z) is a well defined linear map from %? to %? and we have

V2 = U0(z) o Vx

which establishes that C/0(z) is surjective and, by the definition of V{ and V2,

that (1) holds.
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Lemma 2. If tp is as in the statement of Lemma 1 then <p is an analytic home-

omorphism of the disc onto itself, and if we let w = <P~X then for F g Hx^, and

z G D we have

(4) TFiz) = U0iwiz))Fiwiz)).

Proof. By applying Lemma 1 to the isometry T~ ' we obtain the existence of a

map w'D—>D and, for each z G D, a surjective linear operator VQiz) : %? —>

Jr such that for G G Hr we have

T~XGiwiz)) = V0iz)Giz).

Letting F = T~ G we thus have

F(w(z)) = V0(z)TF(z)

and hence

Fiw ° <p(z)) = V0(ç>(z))TF(9(z)) = V0(tp(z))U0(z)F(z)       (by (1))

for all F G Hxr and z G D. Thus, for any F G Hx^, if F(z) = 0 then

Fiw o tpiz)) = 0 from which it follows that w ° ^(z) = z. An analogous

argument obtained by interchanging the roles of T and T~ then gives <p o

Wiz) = z for z g D so that ç? is a bijective map of D onto itself with inverse

W ■ Replacing z by w(z) in (1) then gives (4) and it only remains to show that

W (hence <p) is analytic.

Let the matrix of U0(w(z)) with respect to our basis {ex, ... , en} be

(axx(z) ...aXn(z)\

\anl(Z)---ann(Z)J

If I < j < n and we set F — e , we have TF(z) = ]£¿=i akM)ek > so tnat a""

entries in the matrix are analytic functions on D. Moreover, for any j with

1 < j < n and any z G D we necessarily have

(5) ¿|%(z)|>0,

for otherwise f70(^(z)) could not be surjective.

Next, for any j with 1 < j < n, if we set G(z) = ze. we obtain from (4)

that

TGiz)=-Yá<hp)¥iz)e¡
k=\

so that (5) then implies that wiz) is analytic on D

k=\
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The proof of our theorem is then completed by the following:

Lemma 3. If U(z) is the linear operator mapping ßT onto %? defined by

Uiz) = U0(z) • (p\z), z G D, then f7(z) is equal to a constant unitary op-

erator U. Moreover, for F G H^. we have

TF(z) = UF(w(z))w'(z),        zgD.

Proof. The map Tx which sends an element G G H# to the function

Go(piz)-(p\z) is a surjective isometry of H^, with inverse given by T~ C7(z) =

G o wiz) • w'iz) ■ Now by (4) we have, for F g H#,

TxTFiz) = Tx[U0iwiz))F o wiz)]

= U0iw o <piz))F owo <piz) ■ <p\z)

= «7(z)F(z)

where £/(z) = f70(z) • tp'iz). Thus, if we can show that £/(•) is a constant

isometry of %?, we would obtain

TFiz) = T;XUFiz) = UFiwiz)) ■ w\z)

thus completing the proof.

Thus suppose that, with respect to our orthonormal basis {ex, ... ,en}, for

z G D the matrix of U(z) is

'uxx(z) ... uXn(z)'

\unX(z)...unn(z)

Arguing as in the proof of Lemma 2 we see that each of the entries «,,(•) are

H   functions, and we use the same symbol u¡¡ to denote the corresponding

function on dD.

If f G Hl and 1 < j < n , consider the element /> G H^,. We have

¿/>
dt \TxTifej) Y,f-uue>

i=\
1/2

= ¿/>(¿K/)    *.

Hence,

2n ¡' \f\
J — n

Ei",
1/2

,i=l

dt,

and, since the moduli of H   functions are dense in the set of nonnegative,

real-valued elements of L (dD), we conclude that for each j, 1 < j < n ,
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(6) E KjV)l   = !>        a-e- on dD,
k=\

which is to say that the column vectors of Uie") are unitary vectors on dD

for almost all e" . Note that, as a consequence, the entries ukA-) are not only

H   elements but, in fact, H°° elements.

Since Yl"k=\ lM*;(")l   is subharmonic on D, we have

(7) ¿|M,.(z)|2<l,        zgD.

k=l

Hence, for z G D, the column vectors of £/(z) have length not greater than 1.

Also if 1 < j < m < n consider, for f g Hx, the element fieJ + fem of H# .

We have

^ ■ ¿ £ w * - i/«j+/'».iii * »r. ̂+/«jii

= ¿/>(ÍX+«tJ2)',2<<<-

Thus

'¿/-J71 Ehu+« A-m

\ 1/2
2        -V2

<k=i

dt,

so again using the density of the moduli of H   elements in the set of nonneg-

ative, real-valued elements of L idD) we get that Y^l=i \ukj + ukm\   = ^ a-e-

on dD. Thus

n

E[l"*/g")l  + \ukm(e")\  +2^iukjie")ukmie"))] = 2
k=i

which, together with (6) gives

(8) £ Reiukjie")ükmie")) = 0      a.e. on dD.
k=\

If we replace fe} + fem by fe} + ifem , the same argument then gives

(9) ]T Im(«fcy.(í")atm(í")) = 0       a.e. on dD
k=\

so that (8) and (9) together give

ÍXVX»(*'') = 0      a.e. on dD
k=\
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We have thus shown that t/(-) is made up of column vectors which are of

unit length and pairwise orthogonal a.e. on dD. That is, Uie") is a.e. a uni-

tary operator on dD, and if we denote by Vie") = [vkÁe")] the operator

U*ie"), then the rule for computing the inverse of a matrix shows that the

entires vkAe"), considered as functions on dD, belong to H°° and we use

the same symbols vkj(-) to denote the corresponding functions defined on the

disc.

An argument analogous to that which produced (7) shows that for each j,

1 < J < n , and each z g D,

Ei%(z)i2^\vkj^z>\ s-i
k = \

and since the rows, as well as the columns of [vk Ae")] have unit length a.e. we

have, for I < j < n ,

(10) ¿|^(z)|2<l,       ZGD.

k=\

Thus
n

J2Vjk(e")Ukm(e") = Sjm a-e" 0n dD>
k = \

and hence

(11) èV'kmÀ«**,       on all of Ö.
k=\

And since Y^l^v jkiz)ukmiz) is equal to the inner product

(v]Xiz)ex + ■■■ + vjniz)en , uXjiz)ex + ■■■ + Unjiz)en),

(11), together with (7) and (10), shows that ££„, \ukjiz)\2 = 1 for all zgD.

We have thus shown that, for I < j < n, z —► f/(z)e\ is a vector-valued

function defined on D to / such that ||C/(z)e || = 1 for zeD. Hence the

strong maximum modulus theorem for analytic vector-valued functions [12,

Theorem 3.2] implies that Uiz)e, is constant. Hence [/(•) is a constant and

the proof is complete.

3. Remarks and problems

(a) Can one establish the theorem of this article for HE , where E belongs to

a class of finite-dimensional Banach spaces properly containing Hubert space?

In [3] necessary and sufficient conditions were obtained on a finite-dimensional

complex Banach space E which allow the description of the isometries of H^

given in [ 1 ] to be extended to //|° . Thus, can one similarly characterize those

finite-dimensional Banach spaces E which are such that the H theorem estab-

lished in this article extends to HE ? Since the condition on E obtained in the
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H°° case was that it not admit nontrivial L°°-summands, it might be tempting

to conjecture that the proper Hx condition is the absence of L'-summands.

This condition is clearly necessary, but is it sufficient?

(b) Quite recently Lin [9] has been able to extend the H°° result of [1] to 7/|° ,

for certain infinite-dimensional Banach spaces E. Thus does the H theorem

of our paper have an analogue for infinite-dimensional range spaces? Quite

obviously, many of the arguments used in this article are finite-dimensional in

nature.

(c) The isometries of Hp for 1 < p < oo, p j¿ 2, have been described by

Forelli [6]. To the best of the authors' knowledge, there is no formulation of

Forelli's theorem for vector-valued functions which exists in the literature.
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