Hypertranscendence of the functional equation $g(x^ 2)=[g(x)]^ 2+cx$
HTML articles powered by AMS MathViewer
- by Peter Borwein
- Proc. Amer. Math. Soc. 107 (1989), 215-221
- DOI: https://doi.org/10.1090/S0002-9939-1989-0979226-X
- PDF | Request permission
Abstract:
The functional equation $g({x^2}) = {[g(x)]^2} + cx$ has a unique nontrivial solution that is analytic at zero. We show, for $c > 0$, that the solution of this equation satisfies no algebraic differential equation.References
- Jonathan Arazy, Tomas Claesson, Svante Janson, and Jaak Peetre, Means and their iterations, Proceedings of the nineteenth Nordic congress of mathematicians (Reykjavík, 1984) Vísindafél. Ísl., XLIV, Icel. Math. Soc., Reykjavík, 1985, pp. 191–212. MR 828035 J. M. Borwein and P. B. Borwein, Pi and the AGM—a study in analytic number theory and computational complexity, Wiley, New York, 1987.
- J. M. Borwein and P. B. Borwein, Unsolved Problems: The Way of All Means, Amer. Math. Monthly 94 (1987), no. 6, 519–522. MR 1541118, DOI 10.2307/2322842
- D. H. Lehmer, On the compounding of certain means, J. Math. Anal. Appl. 36 (1971), 183–200. MR 281696, DOI 10.1016/0022-247X(71)90029-1
- J. H. Loxton and A. J. Van der Poorten, A class of hypertranscendental functions, Aequationes Math. 16 (1977), no. 1-2, 93–106. MR 476659, DOI 10.1007/BF01836423
- J. H. Loxton and A. J. Van der Poorten, Transcendence and algebraic independence by a method of Mahler, Transcendence theory: advances and applications (Proc. Conf., Univ. Cambridge, Cambridge, 1976) Academic Press, London, 1977, pp. 211–226. MR 0476660
- K. Mahler, Remarks on a paper by W. Schwarz, J. Number Theory 1 (1969), 512–521. MR 249366, DOI 10.1016/0022-314X(69)90013-4
- K. Mahler, On a special nonlinear functional equation, Proc. Roy. Soc. London Ser. A 378 (1981), no. 1773, 155–178. MR 635225, DOI 10.1098/rspa.1981.0146
- J. F. Ritt, Transcendental transcendency of certain functions of Poincaré, Math. Ann. 95 (1926), no. 1, 671–682. MR 1512299, DOI 10.1007/BF01206632
- Lee A. Rubel, Some research problems about algebraic differential equations, Trans. Amer. Math. Soc. 280 (1983), no. 1, 43–52. MR 712248, DOI 10.1090/S0002-9947-1983-0712248-1
- J. H. M. Wedderburn, The functional equation $g(x^2)=2\alpha x+[g(x)]^2$, Ann. of Math. (2) 24 (1922), no. 2, 121–140. MR 1502633, DOI 10.2307/1967710
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 107 (1989), 215-221
- MSC: Primary 39B10; Secondary 30D05
- DOI: https://doi.org/10.1090/S0002-9939-1989-0979226-X
- MathSciNet review: 979226