SIMPLE C*-ALGEBRAS AND SUBGROUPS OF Q

GERALD J. MURPHY

(Communicated by John B. Conway)

Abstract. A special case of a conjecture of R. Douglas is solved by an elementary argument using \(K_0 \)-theory.

Let \(\Gamma \) be a subgroup of the additive reals \(\mathbb{R} \) and let \(\Gamma^+ = \{ x \in \Gamma : x \geq 0 \} \). Douglas [2] defines a one-parameter semigroup of isometries to be a homomorphism \(x \mapsto V_x \) of \(\Gamma^+ \) into the set of isometries on some Hilbert space \(H \) (i.e. \(V_{x+y} = V_x V_y \) for \(x, y \in \Gamma^+ \) and \(V_0 = 1 \)). Denoting by \(A_{\Gamma}(V_x) \) the C*-algebra generated by all \(V_x (x \in \Gamma^+) \) and calling the map \(x \mapsto V_x \) nonunitary if no \(V_x \) is unitary except \(V_0 = 1 \), he shows that if \(x \mapsto V_x \) and \(x \mapsto W_x \) are nonunitary one-parameter semigroups of isometries on \(\Gamma \) then the algebras \(A_{\Gamma}(V_x) \) and \(A_{\Gamma}(W_x) \) are canonically isomorphic. Thus one can speak of \(A_{\Gamma} \) (isomorphic to \(A_{\Gamma}(V_x) \)) and of its commutator ideal \(C_{\Gamma} \). Douglas shows that \(C_{\Gamma} \) is simple, and that if \(\Gamma_1 \) and \(\Gamma_2 \) are subgroups of \(\mathbb{R} \), then \(A_{\Gamma_1} \) and \(A_{\Gamma_2} \) are \(*\)-isomorphic iff \(\Gamma_1 \) and \(\Gamma_2 \) are isomorphic as ordered groups. He obtains other interesting results on these algebras and conjectures that \(C_{\Gamma} \) is \(\mathbb{AF} \)-algebra for \(\Gamma \) a subgroup of \(\mathbb{Q} \) (the additive rationals) and that in this case we have \(K_0(C_{\Gamma}) = \Gamma \) where \(K_0(\cdot) \) denotes the \(K_0 \)-group of \(C_{\Gamma} \). (For a good account of \(K_0 \)-theory see Goodearl [3].) From this we deduce that Douglas' conjecture is true for subgroups of \(\mathbb{Q} \).

Douglas was led to investigating these algebras \(A_{\Gamma} \) in the context of a generalized Toeplitz theory. The author has shown they satisfy a certain universal property which can facilitate their analysis, and he has generalized them by associating with every ordered group \(G \) a \(C^* \)-algebra which reflects both order and algebra properties of \(G \). The results presented here are part of an ongoing investigation of this more general theory, of which the author intends to give a fuller account in a forthcoming paper.

Let \(H \) be a separable infinite-dimensional Hilbert space, and let \(U \) be the unilateral shift on \(H \). We denote by \(C \) the \(C^* \)-subalgebra of \(B(H) \) generated by \(U \), and by \(K \) the commutator ideal of \(C \). (The commutator ideal of a
\(C^* \)-algebra \(B \) is the closed ideal of \(B \) generated by all commutators \(ab - ba \) \((a, b \in B)\). \(C \) is the Toeplitz algebra and has the following very useful property: If \(v \) is an isometry in a unital \(C^* \)-algebra \(B \) then there exists a unique \(* \)-homomorphism \(\beta \) from \(C \) to \(B \) such that \(\beta(U) = v \) (Coburn [1]).

We will be retaining the notation \(U \), \(C \) and \(K \) throughout this paper. Of course, as is well known, \(K \) is the ideal of compact operators in \(B(H) \), and is thus a simple \(C^* \)-algebra.

Let \(n \) be a map from the set \(P \) of all prime integers into \(\mathbb{N} \cup \{\infty\} \) and let \(G(n) \) denote the set of all quotients \(a/b \) where \(a, b \in \mathbb{Z} \), \(b > 0 \), and if \(p \in P \) and \(p^k \) divides \(b \) then \(k \leq n(p) \). This is a subgroup of \(\mathbb{Q} \) and in fact every subgroup of \(\mathbb{Q} \) is isomorphic to one of these groups \(G(n) \) [4, p. 28]. If \(n_1, n_2, \ldots \) is a sequence of positive integers such that \(n_k \) divides \(n_{k+1} \) \((k = 1, 2, \ldots)\) we denote by \(\mathbb{Z}(1/n_1, 1/n_2, \ldots) \) the subgroup of \(\mathbb{Q} \) generated by \(1/n_1, 1/n_2 \ldots \). Using the above mentioned fact, one can show by an elementary argument that every subgroup of \(\mathbb{Q} \) is isomorphic to one of this form \(\mathbb{Z}(1/n_1, 1/n_2, \ldots) \). This is a crucial point in our analysis of \(C_T \).

Proposition 1. Let \(n_1, n_2, \ldots \) be a sequence of positive integers such that \(n_k \) divides \(n_{k+1} \) \((k = 1, 2, \ldots)\). Define \(\phi_k : \mathbb{Z} \to \mathbb{Z} \) by setting \(\phi_k(m) = mn_{k+1}/n_k \) \((k = 1, 2, \ldots)\). Then \(\mathbb{Z}(1/n_1, 1/n_2, \ldots) \) is the direct limit \((in the category of abelian groups)\) of the sequence of groups and homomorphisms \((\phi_k : \mathbb{Z} \to \mathbb{Z})_{k=1}^\infty \).

Proof. Let \(\Gamma \) denote \(\mathbb{Z}(1/n_1, 1/n_2, \ldots) \). Define the homomorphisms \(\phi^k : \mathbb{Z} \to \Gamma \) by setting \(\phi^k(m) = m/n_k \) \((k = 1, 2, \ldots)\). We have \(\phi^{k+1} \phi_k = \phi^k \) \((k = 1, 2, \ldots)\). Suppose that \(\psi^k : \mathbb{Z} \to G \) are homomorphisms into an abelian group \(G \) such that \(\psi^{k+1} \phi_k = \psi^k \) \((k = 1, 2, \ldots)\). Then \(\psi^k(1) = \psi^{k+1} \phi_k(1) = \psi^{k+1}(n_{k+1}/n_k) = n_{k+1}/n_k \psi^{k+1}(1) \). It follows that \(\psi^k(1)/\psi^{k+1}(1) = n_j/n_k \psi^j(1) \) if \(k < j \). Thus if \(\phi^k(m_1) = \phi^j(m_2) \) then \(m_1/n_k = m_2/n_j \) so \(\psi^k(m_1) = m_1n_j/n_k \psi^j(1) = m_2 \psi^j(1) = \psi^j(m_2) \). Now since \(1/n_1, 1/n_2, \ldots \) generate \(\Gamma \), \(\Gamma \) is the union of the increasing sequence of subgroups \(\phi^k(\mathbb{Z}) \subseteq \phi^2(\mathbb{Z}) \subseteq \cdots \), so we can define a map \(\psi : \Gamma \to G \) by setting \(\psi(\phi^k(m)) = \psi^k(m) \), and we know that \(\psi \) is well defined by the above remarks. It is now clear that \(\psi \) is the unique homomorphism \(\gamma \) from \(\Gamma \) to \(G \) such that \(\gamma \phi^k = \psi^k \) \((k = 1, 2, \ldots)\). Thus we have shown that \(\Gamma \) has the appropriate “universal” or “diagram” property, and so \(\Gamma \) is the direct limit of the sequence \((\phi^k : \mathbb{Z} \to \mathbb{Z})_{k=1}^\infty \). \(\square \)

Remarks. 1. If \(\psi : \Gamma_1 \to \Gamma_2 \) is an isomorphism of subgroups of \(\mathbb{R} \) such that \(x \leq y \) iff \(\psi(x) \leq \psi(y) \) \((x, y \in \Gamma_1)\) then \(\psi \) is called an order isomorphism. In this case we have \(A_{\Gamma_1} \) and \(A_{\Gamma_2} \) are \(*\)-isomorphic.

2. If \(\psi : \Gamma_1 \to \Gamma_2 \) is an isomorphism of subgroups of \(\mathbb{Q} \), then \(-\psi \) is one also, and either \(\psi \) or \(-\psi \) is an order isomorphism. (Proof. If \(\Gamma_1 = 0 \), there’s nothing to prove, so suppose that \(x \in \Gamma_1 \), \(x > 0 \). Let \(\varepsilon = \psi(x)/|\psi(x)| \). Then \(\phi = \varepsilon \psi \) is clearly an isomorphism. If \(y \in \Gamma_1 \), and \(y > 0 \), then we can write
$mx = ny$ for some positive integers m and n. We have $m\phi(x) = n\phi(y) \Rightarrow \phi(x)/\phi(y) > 0$ and $\phi(x) > 0$, so therefore $\phi(y) > 0$. Thus $\phi(\Gamma^+_1) \subseteq \Gamma^+_2$.

Conversely if $z \in \Gamma^+_2$ then $z = \phi(y)$ for some $y \in \Gamma_1$. If $y < 0$ then $\phi(-y) = -z > 0$ \Rightarrow $z < 0$, a contradiction. Hence $y \geq 0$, so $\Gamma^+_2 = \phi(\Gamma^+_1)$.

Thus subgroups of Q are isomorphic iff they are order isomorphic.

Theorem 2. Let Γ be a subgroup of Q. Then C_{Γ} is a simple AF-algebra and $K_0(C_{\Gamma}) = \Gamma$.

Proof. Without loss of generality we may assume that $\Gamma = Z(1/n_1, 1/n_2, \ldots)$ for some sequence of positive integers n_1, n_2, \ldots such that n_k divides n_{k+1} $(k = 1, 2, \ldots)$. Let $\phi_k : Z \to Z$ be defined as before by setting $\phi_k(m) = mn_{k+1}/n_k$. We define $\Psi_k : C \to C$ as the unique \ast-homomorphism such that $\Psi_k(U)$ is U taken to the power of n_{k+1}/n_k and let $\psi_k : K \to K$ be the corresponding restriction of Ψ_k.

Likewise we define $\Psi_k^* : C \to A_\Gamma$ as the unique \ast-homomorphism such that $\Psi_k^*(U) = V_{1/n_k}$ where $V : \Gamma^+ \to A_\Gamma$ is the one-parameter semigroup of isometries generating A_Γ. We let $\psi_k : K \to C_{\Gamma}$ be the corresponding restriction. Note that ψ_k is injective since K is simple and $\psi_k \neq 0$ ($\psi_k(1-UU^*) = 1 - V_{1/n_k}(V_{1/n_k})^* \neq 0$ since V_{1/n_k} is nonunitary). Now if A is the closure of the union of the increasing sequence of C^*-subalgebras of A_Γ, $\Psi^1(C) \subseteq \Psi^2(C) \subseteq \cdots$ then A is a C^*-subalgebra of A_Γ containing the generating set $V_{1/n_k} = \Psi_k(U)$ $(k = 1, 2, \ldots)$, so $A = A_\Gamma$. (To see the sequence is increasing note that $\Psi_k = \Psi^{k+1}\Psi_k$. To see that V_{1/n_k} $(k = 1, 2, \ldots)$ generate A_Γ note that if x is a positive element of Γ then $x = m_1/n_1 + \cdots + m_r/n_r$ where m_1, \ldots, m_r are integers, so $x = ((m_1/n_1)n_1 + \cdots + (m_r/n_r)n_r)/n_r = m/n_r$ where m is a positive integer. Thus $V_x = (V_{1/n_k})^m$.) Since $A_\Gamma = A$, it follows that C_{Γ} is the closure of the union of the increasing sequence of C^*-subalgebras $\psi^k(K)$ $(k = 1, 2, \ldots)$. We now show that C_{Γ} is the direct limit in the category of C^*-algebras of the sequence of C^*-algebras and \ast-homomorphisms $(\psi_k : K \to K)_{k=1}^\infty$ with the \ast-homomorphisms $\psi^k : K \to C_{\Gamma}$ as "natural" maps. Note that $\psi^{k+1}\psi_k = \psi^k$.

Suppose that $\beta^k : K \to B$ are \ast-homomorphisms into a C^*-algebra B such that $\beta^{k+1}\psi_k = \beta^k$ $(k = 1, 2, \ldots)$. We define the \ast-homomorphism β on the \ast-subalgebra $U\{\psi^k(K) : k = 1, 2, \ldots\}$ by setting $\beta\psi^k(a) = \beta^k(a)$. This is well defined since $\psi^k(a_1) = \psi^k(a_2) \Rightarrow a_1 = a_2$. Necessarily β is norm-decreasing on each C^*-algebra $\psi^k(K)$, and so on their union, which is dense in C_{Γ}. Thus β extends to a unique \ast-homomorphism $\beta : C_{\Gamma} \to B$ such that $\beta\psi^k = \beta^k$ $(k = 1, 2, \ldots)$. This means that C_{Γ} has the appropriate "diagram property" and so C_{Γ} is the direct limit of the sequence $(\psi_k : K \to K)_{k=1}^\infty$. By general principles of C^*-algebra theory, a direct limit of simple C^*-algebras is simple [5], and a direct limit of AF-algebras is an AF-algebra [3]. Thus since K is a simple AF-algebra, C_{Γ} is a simple AF-algebra. Also, since the
functor K_0 is "continuous" (preserves direct limits), we have $K_0(C\Gamma)$ is the direct limit in the category of abelian groups of the sequence $(K_0(\psi_k): K_0(K) \to K_0(K))_{k=1}^{\infty}$. However if $P_k = 1 - U^k(U^k)^*$ then it is well known that $[P_k] = k[P_1]$ and $K_0(K) = \mathbb{Z}[P_1]$, where $[P_1]$ is the "dimension" of the projection P_k in $K_0(K)$. Now $K_0(\psi_k)[P_1] = [\psi_k(P_1)] = [P_{n+1}/n_k] = n_{k+1}/n_k [P_1]$. It follows that on identifying (as we may) $K_0(K)$ with \mathbb{Z} we see that $K_0(\psi_k)$ is just the homomorphism $\phi_k: \mathbb{Z} \to \mathbb{Z}$. Thus $K_0(C\Gamma)$ is the direct limit of the sequence $(\phi_k: \mathbb{Z} \to \mathbb{Z})_{k=1}^{\infty}$. But we saw in Proposition 1 that $\Gamma = \mathbb{Z}(1/n_1, 1/n_2, \ldots)$ is the direct limit of this sequence. Thus $K_0(C\Gamma)$ is isomorphic to Γ. □

Remark. $A\Gamma$ depends on Γ not just as a group, but as an ordered group. However as we saw above, subgroups of \mathbb{Q} are isomorphic iff they are order isomorphic. Thus it follows from Theorem 2 that if Γ_1 and Γ_2 are subgroups of \mathbb{Q} then C_{Γ_1} and C_{Γ_2} are isomorphic iff Γ_1 and Γ_2 are isomorphic groups. Since \mathbb{Q} has infinitely many nonisomorphic subgroups Γ we have infinitely many nonisomorphic C_{Γ}. By the way (as Douglas pointed out in [2]) C_{Γ} is not type I if Γ is not isomorphic to \mathbb{Z} (since if $C\Gamma$ is type I then $C\Gamma$ is isomorphic to $K \Rightarrow C_{\Gamma}$ is isomorphic to $C\mathbb{Z}$).

References